Spatio-temporal patterns of CO2 emissions from energy consumption and vegetation carbon sequestration in China under the emission peak and carbon neutrality
LI Cheng1, YANG Shu-hui2, WU Fang2, XU Yang3, CUI Xue-feng2
1. School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; 2. School of System Science, Beijing Normal University, Beijing 100875, China; 3. Agricultural College, Yangzhou University, Yangzhou 225009, China
Abstract:In order to understand the variation characteristics of CO2 emissions from energy consumption (ERCE) and vegetation carbon sequestration (VCS) in China, dynamic changes and spatial patterns of the ERCE and VCS were quantitatively analyzed from 2000 to 2017 based on multi-source data, including meteorological, satellite, land cover, and statistical data, at the national, provincial, and county scales. Moreover, a carbon pressure index (CPI) was proposed to characterize the relationship between the ERCE and VCS. The ERCE and ERCE per capita had a significant increasing trend between 2000 and 2017 (P<0.01), but both displayed a slight downward trend after 2013 and 2012, respectively. As for spatial patterns, higher increasing trends were found in the northern and eastern China. Both VCS and VCS per capita had a rapidly increasing trend after the year of 2010 (P<0.01), with a trend value of 148.09×106t/a and 0.04t/(person·a), respectively. Particularly, the VCS and VCS per capita displayed larger increasing trends in the northeast region, southwest region, and the Loess Plateau. Nearly 1/3 of all provinces of China had a higher mean value of CPI exceeding 1in China, which meant that the ERCE was higher than VCS. Among them, the relative higher CPI values were found in Shanghai, Tianjin, Jiangsu, Shandong, and Ningxia, and higher increasing trends of CPI were also found in these regions, which indicated that these regions had greater pressure to reduce carbon emissions. The findings can provide an important reference for developing low-carbon policies in different regions of China.
李成, 杨舒慧, 吴芳, 徐扬, 崔雪锋. “双碳”背景下中国能源消费碳排放与植被固碳的时空分异[J]. 中国环境科学, 2022, 42(4): 1945-1953.
LI Cheng, YANG Shu-hui, WU Fang, XU Yang, CUI Xue-feng. Spatio-temporal patterns of CO2 emissions from energy consumption and vegetation carbon sequestration in China under the emission peak and carbon neutrality. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(4): 1945-1953.
Lo A. Carbon emissions trading in China[J]. Nature Climate Change, 2012,2:765-766.
[2]
Zheng X Q, Lu Y L, Yuan J J, et al. Drivers of change in China's energy-related CO2 emissions[J]. Proceedings of the National Academy of Sciences, 2020,117(1):29-36.
[3]
刘纪远,宁佳,匡文慧,等.2010~2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018,73(5):789-802. Liu J Y, Ning J, Kuang W H, et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010~2015[J]. Acta Geographica Sinica, 2018,73(5):789-802.
[4]
Liu Z, Guan D B, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015,524(7565):335-338.
[5]
蔡兆男,成里京,李婷婷,等.碳中和目标下的若干地球系统科学和技术问题分析[J]. 中国科学院院刊, 2021,36(5):602-613. Cai Z N Cheng L J, Li T T, et al. Key scientific and technical issues in earth system science towards achieving carbon neutrality in China[J]. Bulletin of the Chinese Academy of Sciences, 2021,36(5):602-613.
[6]
李勇,高岚.中国"碳中和"目标的实现路径与模式选择[J]. 华南农业大学学报(社会科学版), 2021,20(5):77-93. Li Y, Gao L. Implementation path and mode selection of China's carbon neutralization goal[J]. Journal of South China Agricultural University (Social Science Edition), 2021,20(5):77-93.
[7]
Fu B J, Liu Y X, Li Y, et al. The research priorities of Resources and Environmental Sciences[J]. Geography and Sustainability, 2021, 2(2):87-94.
[8]
Fang J Y, Yu G R, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences, 2018,115(16):4015-4020.
[9]
Wang M, Feng C. Decomposition of energy-related CO2 emissions in China:an empirical analysis based on provincial panel data of three sectors[J]. Applied energy, 2017,190:772-787.
[10]
Lan X, Liu Z Y, Chen X H, et al. Trade-off between carbon sequestration and water loss for vegetation greening in China[J]. Agriculture, Ecosystems & Environment, 2021,319:107522.
[11]
Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831):720-723.
[12]
Chen J D, Li Z W, Dong Y Z, et al. Coupling coordination between carbon emissions and the eco-environment in China[J]. Journal of Cleaner Production, 2020,276:123848.
[13]
Ding S, Xu N, Ye J, et al. Estimating Chinese energy-related CO2 emissions by employing a novel discrete grey prediction model[J]. Journal of Cleaner Production, 2020,259:120793.
[14]
Tang X L, Zhao X, Bai Y F, et al. Carbon pools in China's terrestrial ecosystems:New estimates based on an intensive field survey[J]. Proceedings of the National Academy of Sciences, 2018,115(16):4021-4026.
[15]
于贵瑞,张雷明,张扬建,等.大尺度陆地生态系统状态变化及其资源环境效应的立体化协同联网观测[J]. 应用生态学报, 2021, 32(6):1903-1918. Yu G R, Zhang L M, Zhang Y J, et al. A coordinated three- dimensional network for observing large-scale terrestrial ecosystem status changes and the consequences on resources and environment[J]. Chinese Journal of Applied Ecology, 2021,32(6):1903-1918.
[16]
Lai L, Huang X J, Yang H, et al. Carbon emissions from land-use change and management in China between 1990 and 2010[J]. Science Advances, 2016,2(11):1601063.
[17]
唐洪松,马惠兰,苏洋,等.新疆不同土地利用类型的碳排放与碳吸收[J]. 干旱区研究, 2016,33(3):486-492. Tang H S, Ma H L, Su Y, et al. Carbon emissions and carbon absorptions of different land use types in Xinjiang[J]. Arid Zone Research, 2016,33(3):486-492.
[18]
张殿岱,王雪梅,昝梅.基于Landsat 8OLI影像的渭-库绿洲植被地上生物量估算[J]. 草业学报, 2021,30(11):1-12. Zhang D D, Wang X M, Zan M. Estimation of vegetation aboveground biomass in the Wei-Ku oasis based on Landsat 8OLI images[J]. Acta Prataculturae Sinica, 2021,30(11):1-12.
[19]
Liu S L, Cheng F Y, Dong S K, et al. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI[J]. Scientific Reports, 2017,7:4182.
[20]
Fern R R, Foxley E A, Bruno A, et al. Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland[J]. Ecological Indicators, 2018,94:16-21.
[21]
Yu Y Y, Li J, Zhou Z X, et al. Estimation of the value of ecosystem carbon sequestration services under different scenarios in the central China (the Qinling-Daba mountain area)[J]. Sustainability, 2020,12(1):337.
[22]
Yang H F, Zhong X N, Deng S Q, et al. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China[J]. CATENA, 2021,206:105542.
[23]
Li X Y, Guo J M, Qi S Z. Forestland landscape change induced spatiotemporal dynamics of subtropical urban forest ecosystem services value in forested region of China:A case of Hangzhou city[J]. Environmental Research, 2021,193:110618.
[24]
Chen J D, Fan W, Li D, et al. Driving factors of global carbon footprint pressure:Based on vegetation carbon sequestration[J]. Applied Energy, 2020,267:114914.
[25]
Jiang J J, Ye B, Xie D J, et al. Provincial-level carbon emission drivers and emission reduction strategies in China:Combining multi-layer LMDI decomposition with hierarchical clustering[J]. Journal of Cleaner Production, 2017,169:178-190.
[26]
Wang S, Gao S, Huang Y, et al. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends[J]. Journal of Geographical Sciences, 2020,30(5):757-774.
[27]
Guan D B, Liu Z, Geng Y, et al. The gigatonne gap in China's carbon dioxide inventories[J]. Nature Climate Change, 2012,2:672-675.
[28]
Shi K F, Chen Y, Yu B L, et al. Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis[J]. Applied Energy, 2016, 168:523-533.
[29]
张永年,潘竟虎.基于DMSP/OLS数据的中国碳排放时空模拟与分异格局[J]. 中国环境科学, 2019,39(4):1436-1446. Zhang Y N, Pan J H. Spatio-temporal simulation and differentiation pattern of carbon emissions in China based on DMSP/OLS nighttime light data[J]. China Environment Science, 2019,39(4):1436-1446.
[30]
Chen H X, Zhang X L, Wu R W, et al. Revisiting the environmental Kuznets curve for city-level CO2 emissions:based on corrected NPP-VIIRS nighttime light data in China[J]. Journal of Cleaner Production, 2020,268:121575.
[31]
Lv Q, Liu H B, Wang J T, et al. Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China:Utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets[J]. Science of The Total Environment, 2020,703:134394.
[32]
Chen J D, Gao M, Cheng S L, et al. County-level CO2 emissions and sequestration in China during 1997~2017[J]. Scientific data, 2020, 7:391.
[33]
Mousivand A, Arsanjani J J. Insights on the historical and emerging global land cover changes:The case of ESA-CCI-LC datasets[J]. Applied Geography, 2019,106:82-92.
[34]
Hu X P, Næss J S, Iordan C M, et al. Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation[J]. Anthropocene, 2021,34:100291.
[35]
周伟,牟凤云,刚成诚,等.1982~2010年中国草地净初级生产力时空动态及其与气候因子的关系[J]. 生态学报, 2017,37(13):4335- 4345. Zhou W, Mu F Y, Gang C C, et al. Spatio-temporal dynamics of grassland net primary productivity and their relationship with climatic factors from 1982 to 2010 in China[J]. Acta Ecologica Sinica, 2017,37(13):4335-4345.
[36]
Zhu W Q, Pan Y Z, Yang X Q, et al. Comprehensive analysis of the impact of climatic changes on Chinese terrestrial net primary productivity[J]. Chinese Science Bulletin, 2007,52(23):3253-3260.
[37]
Yan Y C, Liu X P, Wen Y Y, et al. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China[J]. Ecological Indicators, 2019,103:542-553.
[38]
Yuan Q Z, Wu S H, Zhao D S, et al. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005[J]. Acta Geographica Sinica, 2014,24(1):3-17.
[39]
高志强,刘纪远.中国植被净生产力的比较研究[J]. 科学通报, 2008,53(3):317-326. Gao Z Q, Liu J Y. Comparative analysis for net primary productivity of Chinese terrestrial vegetation[J]. Chinese Science Bulletin, 2008, 53(3):317-326.
[40]
黄玫.中国陆地生态系统水、热通量和碳循环模拟研究[D]. 北京:中国科学院地理科学与资源研究所, 2006. Huang M. Modeling the water energy and CO2 exchanges in China's terrestrial ecosystems[D]. Beijing:Institute of Geographic Sciences and Natural Resources of Chinese Academy of Sciences, 2006.
[41]
王磊,丁晶晶,季永华,等.1981~2000年中国陆地生态系统NPP时空变化特征分析[J]. 江苏林业科技, 2009,36(6):1-5. Wang L, Ding J J, Ji Y H, et al. Spatiotemporal pattern of NPP in terrestrial ecosystem of China from 1981 to 2000[J]. Journal of Jiangsu Forestry Science & Technology, 2009,36(6):1-5.
[42]
陈斌,王绍强,刘荣高,等.中国陆地生态系统NPP模拟及空间格局分析[J]. 资源科学, 2007,29(6):45-53. Chen B, Wang S Q, Liu R G, et al. Study on modeling and spatial pattern of net primary production in China's terrestrial ecosystem[J]. Resource Research, 2007,29(6):45-53.
[43]
Wang J, Dong J, Yi Y, et al. Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012[J]. Journal of Geophysical Research:Biogeosciences, 2017,122(1):261-278.
[44]
高彦华.基于MODIS的中国陆地生态系统碳格局研究[D]. 北京:中国科学院地理科学与资源研究所, 2010. Gao Y H. Research on the carbon structure of China's terrestrial ecosystem based on MODIS[D]. Beijing:Institute of Geographic Sciences and Natural Resources of Chinese Academy of Sciences, 2010.
[45]
赵苗苗,刘熠,杨吉林,等.基于HASM的中国植被NPP时空变化特征及其与气候的关系[J]. 生态环境学报, 2019,28(2):215-225. Zhao M M, Liu Y, Yang J L, et al. Spatio-temporal patterns of NPP and its relations to climate in China based on HASM[J]. Ecology and Environmental Sciences, 2019,28(2):215-225.
[46]
Mi Z F, Sun X L. Provinces with transitions in industrial structure and energy mix performed best in climate change mitigation in China[J]. Communications Earth & Environment, 2021,2:182.
[47]
Zhu J J, Song L N. A review of ecological mechanisms for management practices of protective forests[J]. Journal of Forestry Research. 2021,32:435-448.
[48]
黎鹏,张勇,李夏浩祺,等.黄土丘陵区不同退耕还林措施的土壤碳汇效应[J]. 水土保持研究, 2021,28(4):29-33. Li P, Zhang Y, Li X, et al. Effect of soil carbon sink in the hilly region of the Loess Plateau under Grain for Green Project[J]. Research of Soil and Water Conservation, 2021,28(4):29-33.
[49]
Zheng J L, Mi Z F, Coffman D M, et al. Regional development and carbon emissions in China[J]. Energy Economics, 2019,81:25-36.
[50]
Chen Y Z, Feng X M, Tian H Q, et al. Accelerated increase in vegetation carbon sequestration in China after 2010:A turning point resulting from climate and human interaction[J]. Global Change Biology, 2021,27:5848-5864.
[51]
吴炳方,曾源,闫娜娜,等.生态系统遥感:内涵与挑战[J]. 遥感学报, 2020,24(6):609-617. Wu B F, Zeng Y, Yan N N, et al. Remote sensing for ecosystem:Definition and prospects[J]. National Remote Sensing Bulletin, 2020,24(6):609-617.
[52]
Ji Y H, Zhou G S, Luo T X, et al. Variation of net primary productivity and its drivers in China's forests during 2000~2018[J]. Forest Ecosystems, 2020,7:15.
[53]
Li Y, Piao S L, Chen A P, et al. Local and teleconnected temperature effects of afforestation and vegetation greening in China[J]. National Science Review, 2020,7(5):897-912.
[54]
方精云.碳中和的生态学透视[J]. 植物生态学报, 2021,45(11):1173-1176. Fang J Y. Ecological perspectives of carbon neutrality[J]. Chinese Journal of Plant Ecology, 2021,45(11):1173-1176.
[55]
Hu Y L, Huang W B, Wang J, et al. Current status, challenges, and perspectives of Sichuan's renewable energy development in Southwest China[J]. Renewable and Sustainable Energy Reviews, 2016,57:1373-1385.
[56]
You Z W, Zhao T, Song C, et al. Analyzing China's coal-related carbon emissions from economic growth perspective:Through decoupling and decomposition model[J]. Environmental Science and Pollution Research, 2020,28:3703-3718.
[57]
宋鹏,张慧敏,毛显强.面向碳达峰目标的重庆市碳减排路径研究[J]. 中国环境科学, 2021,DOI:10.19674/j.cnki.issn1000-6923. 20210923.0060923.006. Song P, Zhang H M, Mao X Q. Research on Chongqing's carbon emission reduction path towards the goal of carbon peak[J]. China Environment Science, 2021.DOI:10.19674/j.cnki.issn1000-6923. 20210923.0060923.006.