PMF model based atmospheric aerosol light extinction budget source apportionment study in Wuhan.
XIA Rui1,2, TAN Jian1,2, WANG Qiong-qiong3, WU Dui1,2, KONG Shao-fei4,5, CHEN Nan5,6, DENG Tao7, TAO Li-ping1,2, ZHANG Xue1,2, WU Bo-xi1,2, WU Liang-bin1,2, WANG Qing1,2, WU Cheng1,2
1. Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; 2. Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China; 3. Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China; 4. Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430078, China; 5. Research Centre for Complex Air Pollution of Hubei Province, Wuhan 430074, China; 6. Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430074, China; 7. Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou 510080, China
Abstract:Online observation data from Wuhan in July (summer) and October (autumn) in 2020 was used to quantify the source contribution of PM2.5 on light extinction coefficients by inputting the optical parameters and chemical components of PM2.5 into the positive matrix factorization (PMF) model. This study found that the dominating contributing sources of light absorption coefficient were vehicles (66.3%) and industry (14.2%). For light scattering coefficient, the major contributors were secondary inorganic aerosol Ⅰ (38.4%) and vehicle (27.0%). The source contribution on light scattering showed clear seasonal variations, as the contribution from secondary inorganic aerosol Ⅰ was notably lower in summer (14.6%) than in autumn (47.4%). As for the light extinction coefficient, vehicles (37.2%) and secondary inorganic aerosol Ⅱ (21.2%) were the major contributors in summer, while secondary inorganic aerosol Ⅰ (44.7%) and vehicles (26.7%) were the dominating sources in autumn. The absorption Ångström exponent (AAE) values for several important sources were also obtained in this study, including vehicles (0.96), industry (1.04), dust (1.39), and biomass burning (2.24).
吴兑,毛节泰,邓雪娇,等.珠江三角洲黑碳气溶胶及其辐射特性的观测研究[J]. 中国科学(D辑:地球科学), 2009,39(11):1542-1553. Wu D, Mao J T, Deng X J, et al. Black carbon aerosols and their radiative properties in the Pearl River Delta region[J]. Sci. China Ser. D-Earth Sci., 2009,52(8):1152-1163.
[2]
Lohmann U, Lesins G. Stronger constraints on the anthropogenic indirect aerosol effect[J].Science, 2002,298(5595):1012-1015.
[3]
Yu H, Kaufman Y J, Chin M, et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing[J]. Atmos. Chem. Phys., 2006,6(3):613-666.
[4]
Rosenfeld D. Suppression of Rain and Snow by Urban and Industrial Air Pollution[J]. Science, 2000,287(5459):1793-1796.
[5]
Chow J C, Bachmann J D, Wierman S S G, et al. Visibility:Science and regulation[J]. J. Air Waste Manage. Assoc., 2002,52(9):973-999.
[6]
Chan Y C, Simpson R W, McTainsh G H, et al. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques[J]. Atmos. Environ., 1999, 33(19):3237-3250.
[7]
Tao J, Cao J J, Zhang R J, et al. Reconstructed light extinction coefficients using chemical compositions of PM2.5 in winter in Urban Guangzhou, China[J]. Adv. Atmos. Sci., 2012,29(2):359-368.
[8]
Liao W, Zhou J, Zhu S, et al. Characterization of aerosol chemical composition and the reconstruction of light extinction coefficients during winter in Wuhan, China[J]. Chemosphere, 2020,241:125033.
[9]
Hand J, Copeland S, Day D, et al. IMPROVE (Interagency monitoring of protected visual environments):Spatial and seasonal patterns and temporal variability of haze and its constituents in the United States, IMPROVE Report V[R]. (2011).
[10]
Shen G, Xue M, Yuan S, et al. Chemical compositions and reconstructed light extinction coefficients of particulate matter in a mega-city in the western Yangtze River Delta, China[J]. Atmos. Environ., 2014,83:14-20.
[11]
郑玫,张延君,闫才青,等.中国PM2.5来源解析方法综述[J]. 北京大学学报(自然科学版), 2014,50(6):1141-1154. Zheng M, Zhang Y J, Yan C Q, et al. Review of PM2.5 source apportionment methods in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014,50(6):1141-1154.
[12]
Hopke P K. Review of receptor modeling methods for source apportionment[J]. J. Air Waste Manage, 2016,66(3):237-259.
[13]
Wang Q, Qiao L, Zhou M, et al. Source Apportionment of PM2.5 using hourly measurements of elemental tracers and major constituents in an Urban Environment:Investigation of Time-Resolution Influence[J]. J. Geophys, Res., 2018,123(10):5284-5300.
[14]
Paatero P. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1):23-35.
[15]
Belis C A, Larsen B R, Amato F, et al. European guide on air pollution source apportionment with receptor models[R]. (2014).
[16]
Sandradewi J, Prevot A S H, Szidat S, et al. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter[J]. Environ Sci Technol, 2008,42(9):3316-3323.
[17]
Herich H, Hueglin C, Buchmann B A. 2.5year's source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland[J]. Atmos. Meas. Tech., 2011,4(7):1409-1420.
[18]
Favez O, Cachier H, Sciare J, et al. Evidence for a significant contribution of wood burning aerosols to PM2.5during the winter season in Paris, France[J]. Atmos. Environ., 2009,43(22):3640-3644.
[19]
Favez O, E l Haddad I, Piot C, et al. Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France)[J].Atmos. Chem. Phys., 2010,10(12):5295-5314.
[20]
Zheng H, Kong S, Wu F, et al. Intra-regional transport of black carbon between the south edge of the North China Plain and central China during winter haze episodes[J]. Atmos. Chem. Phys., 2019,19(7):4499-4516.
[21]
Küpper M, Quass U, John A C, et al. Contributions of carbonaceous particles from fossil emissions and biomass burning to PM10 in the Ruhr area, Germany[J]. Atmos. Environ., 2018,189:174-186.
[22]
Pokhrel R P, Wagner N L, Langridge J M, et al. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC/OC for aerosol emissions from biomass burning[J]. Atmos. Chem. Phys., 2016,16(15):9549-9561.
[23]
Helin A, Virkkula A, Backman J, et al. Variation of absorption Ångström exponent in aerosols from different emission sources[J]. J. Geophys. Res., 2021,126(10):e2020JD034094.
[24]
Wu C, Wu D, Yu J Z. Quantifying black carbon light absorption enhancement with a novel statistical approach[J]. Atmos Chem Phys, 2018,18(1):289-309.
[25]
Martinsson J, Eriksson A C, Nielsen I E, et al. Impacts of combustion conditions and photochemical processing on the light absorption of biomass combustion aerosol[J]. Environ. Sci. Technol., 2015,49(24):14663-14671.
[26]
谭健,夏瑞,吴兑,等.地壳元素铁的吸光贡献对黑碳吸光增强估算的影响:以武汉为例[J]. 中国环境科学, 2022,42(7):3033-3045. Tan J, Xia R, Wu D, et al. Determination of crustal element iron light absorption contribution and effects on black carbon light absorption enhancement estimation:a case study in Wuhan[J]. China Environmental Science, 2022,42(7):3033-3045.
[27]
Mian C, Diehl T, Dubovik O, et al. Light absorption by pollution, dust, and biomass burning aerosols:a global model study and evaluation with AERONET measurements[J]. Ann. Geophys., 2009,27(9):3439- 3464.
[28]
Tao J, Zhang L, Cao J, et al. Characterization and source apportionment of aerosol light extinction in Chengdu, southwest China[J]. Atmos. Environ., 2014,95:552-562.
[29]
Tian J, Wang Q, Han Y, et al. Contributions of aerosol composition and sources to particulate optical properties in a southern coastal city of China[J]. Atmos. Res., 2020,235:104744.
[30]
Wang Q, Liu H, Wang P, et al. Optical source apportionment and radiative effect of light-absorbing carbonaceous aerosols in a tropical marine monsoon climate zone:the importance of ship emissions[J]. Atmos. Chem. Phys., 2020,20(24):15537-15549.
[31]
Forello A C, Bernardoni V, Calzolai G, et al. Exploiting multi- wavelength aerosol absorption coefficients in a multi-time resolution source apportionment study to retrieve source-dependent absorption parameters[J]. Atmos. Chem. Phys., 2019,19(17):11235-11252.
[32]
Forello A C, Amato F, Bernardoni V, et al. Gaining knowledge on source contribution to aerosol optical absorption properties and organics by receptor modelling[J]. Atmos Environ, 2020,243:117873.
[33]
Romano S, Vecchi R, Perrone M R. Intensive optical parameters of pollution sources identified by the positive matrix factorization technique[J]. Atmos. Res., 2020,244:105029.
[34]
Liu H, Wang Q, Xing L, et al. Measurement report:quantifying source contribution of fossil fuels and biomass-burning black carbon aerosol in the southeastern margin of the Tibetan Plateau[J]. Atmos. Chem. Phys., 2021,21(2):973-987.
[35]
成海容,王祖武,冯家良,等.武汉市城区大气PM2.5的碳组分与源解析[J]. 生态环境学报, 2012,21(9):1574-1579. Cheng H R, Wang Z W, Feng J L, et al. Carbonaceous species composition and source apportionment of PM2.5 in urban atmosphere of Wuhan[J]. Ecology and Environmental Sciences, 2012,21(9):1574- 1579.
[36]
Xiong Y, Zhou J, Schauer JJ, et al. Seasonal and spatial differences in source contributions to PM2.5 in Wuhan, China[J]. Sci. Total Environ., 2017,577:155-165.
[37]
Yao L, Kong S, Zheng H, et al. Co-benefits of reducing PM2.5 and improving visibility by COVID-19lockdown in Wuhan[J]. NPJ Clim. Atmos. Sci., 2021,4(1):40.
[38]
Wang T, Du Z, Tan T, et al. Measurement of aerosol optical properties and their potential source origin in urban Beijing from 2013~2017[J].Atmos. Environ., 2019,206:293-302.
[39]
Ma N, Zhao C S, Nowak A, et al. Aerosol optical properties in the North China Plain during HaChi campaign:an in-situ optical closure study[J]. Atmos. Chem. Phys., 2011,11(12):5959-5973.
[40]
Deng X J, Tie XX, Wu D, et al. Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China[J]. Atmos. Environ., 2008,42(7):1424-1435.
[41]
Wang X, Ding X, Fu X, et al. Aerosol scattering coefficients and major chemical compositions of fine particles observed at a rural site in the central Pearl River Delta, South China[J]. Journal of Environmental Sciences, 2012,24(1):72-77.
[42]
Xu J, Tao J, Zhang R, et al. Measurements of surface aerosol optical properties in winter of Shanghai[J]. Atmos Res, 2012,109-110:25-35.
[43]
Shen Y, Virkkula A, Ding A, et al. Aerosol optical properties at SORPES in Nanjing, east China[J]. Atmos. Chem. Phys., 2018,18(8):5265-5292.
[44]
Gong W, Zhang M, Han G, et al. An investigation of aerosol scattering and absorption properties in Wuhan, Central China[J]. Atmosphere, 2015,6(4):503-520.
[45]
Huntzicker J J, Johnson R L, Shah J J, et al.Analysis of organic and elemental carbon in ambient aerosols by a thermal-optical method[M]. Springer, Boston, MA:Particulate Carbon, 1982:79-88.
[46]
Wu C, Wu D, Yu J Z. Estimation and uncertainty analysis of secondary organic carbon using one-year of hourly organic and elemental carbon data[J]. J. Geophys. Res., 2019,124(5):2774-2795.
[47]
Coen M C, Weingartner E, Apituley A, et al. Minimizing light absorption measurement artifacts of the Aethalometer:evaluation of five correction algorithms[J]. Atmos Meas Tech, 2010,3(2):457-474.
[48]
Weingartner E, Saathoff H, Schnaiter M, et al. Absorption of light by soot particles:determination of the absorption coefficient by means of aethalometers[J]. J. Aerosol Sci., 2003,34(10):1445-1463.
[49]
程丁,吴晟,吴兑,等.深圳市城区和郊区黑碳气溶胶对比研究[J]. 中国环境科学, 2018,38(5):1653-1662. Cheng D, Wu C, Wu D, et al. Comparative study on the characteristics of black carbon aerosol in urban and suburban areas of Shenzhen.[J]. China Environmental Science, 2018,38(5):1653-1662.
[50]
Paatero P, Tapper U. Positive matrix factorization:A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994,5(2):111-126.
[51]
Reff A, Eberly S I, Bhave P V. Receptor modeling of ambient particulate matter data using positive matrix factorization:Review of existing methods[J]. J. Air Waste Manage. Assoc., 2007,57(2):146- 154.
[52]
Beddows D C S, Harrison RM. Receptor modelling of both particle composition and size distribution from a background site in London, UK-a two-step approach[J]. Atmos. Chem. Phys., 2019,19(7):4863- 4876.
[53]
Kim E, Hopke P K, Edgerton E S. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization[J]. Atmos. Environ., 2004,38(20):3349-3362.
[54]
Wu C, Yu J Z. Evaluation of linear regression techniques for atmospheric applications:the importance of appropriate weighting[J]. Atmos. Meas. Tech., 2018,11(2):1233-1250.
[55]
Wang Y Q. MeteoInfo:GIS software for meteorological data visualization and analysis[J]. Meteorol Appl, 2014,21(2):360-368.
[56]
Turpin B J, Lim H J. Species contributions to PM2.5 mass concentrations:Revisiting common assumptions for estimating organic mass[J]. Aerosol Sci. Technol., 2001,35(1):602-610.
[57]
Tao Y, Ye X, Ma Z, et al. Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai[J]. Atmos. Environ., 2016,145:1-9.
[58]
Cao J J, Zhu C S, Tie XX, et al. Characteristics and sources of carbonaceous aerosols from Shanghai, China[J]. Atmos. Chem. Phys., 2013,13(2):803-817.
[59]
Xue J, Yu X, Yuan Z, et al. Efficient control of atmospheric sulfate production based on three formation regimes[J]. Nat Geosci, 2019, 12(12):977-982.
[60]
Zhu Y, Li W, Lin Q, et al. Iron solubility in fine particles associated with secondary acidic aerosols in east China[J]. Environ Pollut, 2020, 264:114769.
[61]
Fan M Y, Zhang Y L, Lin Y C, et al. Roles of sulfur oxidation pathways in the variability in stable sulfur isotopic composition of sulfate aerosols at an urban site in Beijing, China[J]. Environmental Science & Technology Letters, 2020,7(12):883-888.
[62]
Li J, Zhang Y L, Cao F, et al. Stable sulfur isotopes revealed a major role of transition-metal ion-catalyzed SO2 oxidation in haze episodes[J]. Environ Sci Technol, 2020,54(5):2626-2634.
[63]
Xu W, Kuang Y, Liang L, et al. Dust-dominated coarse particles as a medium for rapid secondary organic and inorganic aerosol formation in highly polluted air[J]. Environ Sci Technol, 2020,54(24):15710- 15721.
[64]
Li Q, Cheng H, Zhou T, et al. The estimated atmospheric lead emissions in China, 1990~2009[J]. Atmos. Environ., 2012,60:1-8.
[65]
Cui Y, Ji D, Maenhaut W, et al. Levels and sources of hourly PM2.5- related elements during the control period of the COVID-19 pandemic at a rural site between Beijing and Tianjin[J]. Sci. Total Environ., 2020,744:140840.
[66]
Pekney N J, Davidson C I, Zhou L, et al. Application of PSCF and CPF to PMF-Modeled Sources of PM2.5 in Pittsburgh[J]. Aerosol Sci. Technol., 2006,40(10):952-961.
[67]
Querol X, Viana M, Alastuey A, et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain[J]. Atmos. Environ., 2007,41(34):7219-7231.
[68]
Zheng H, Kong S, Chen N, et al. Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19[J]. Sci. Total Environ., 2020,739:140000.
[69]
Liu J, Chen Y, Chao S, et al. Emission control priority of PM2.5-bound heavy metals in different seasons:A comprehensive analysis from health risk perspective[J]. Sci. Total Environ., 2018,644:20-30.
[70]
Park D, Oh M, Yoon Y, et al. Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization[J]. Atmos. Environ., 2012,49:180-185.
[71]
Chow J C, Watson J G. Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model[J]. Energy & Fuels, 2002,16(2):222-260.
[72]
Chen J, Li C, Ristovski Z, et al. A review of biomass burning:Emissions and impacts on air quality, health and climate in China[J]. Sci. Total Environ., 2017,579:1000-1034.
[73]
Saleh R, Hennigan C J, McMeeking G R, et al. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions[J]. Atmos. Chem. Phys., 2013,13(15):7683-7693.
[74]
Sun Y, Wang Z, Fu P, et al. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China[J]. Atmos. Environ., 2013,77:927-934.
[75]
Wang Q, Liu H, Ye J, et al. Estimating absorption Ångström exponent of black carbon aerosol by coupling multiwavelength absorption with chemical composition[J]. Environmental Science & Technology Letters, 2021,8(2):121-127.
[76]
Zotter P, Herich H, Gysel M, et al. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer- based source apportionment using radiocarbon measurements of ambient aerosol[J]. Atmos. Chem. Phys., 2017,17(6):4229-4249.
[77]
Blanco Alegre C, Calvo A I, Alves C, et al. Aethalometer measurements in a road tunnel:A step forward in the characterization of black carbon emissions from traffic[J]. Sci. Total. Environ., 2020,703:135483.
[78]
Lewis K, Arnott W P, Moosmüller H, et al. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument[J]. J. Geophys. Res., 2008,113(D16):D16203.
[79]
Zhang X, Jiang H, Mao M. Absorption angstrom exponent of dust aerosols over the Tarim Basin[J]. Pure and Applied Geophysics, 2021,178:4549-4560.
[80]
Yang M, Howell S G, Zhuang J, et al. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China-interpretations of atmospheric measurements during EAST-AIRE[J]. Atmos. Chem. Phys., 2009,9(6):2035-2050.
[81]
Zhai S, Jacob D J, Wang X, et al. Control of particulate nitrate air pollution in China[J]. Nat. Geosci., 2021,14(6):389-395.