Assessment for Co-benefits of low-carbon city on CO2 and PM2.5 in China
ZHAO Yan-yun1, LU Xiang-yi1, WANG Wen2
1. School of Statistics, Renmin University of China, Beijing 100872, China; 2. School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
Abstract:This paper incorporated CO2 and PM2.5 that based on satellite remote sensing data into a unified research framework. The time-varying difference-in-differences model was used to explore the Co-benefits and impact mechanism of low-carbon city construction from 2007 to 2019 at the city scale. It was found that the Co-benefits of CO2 and PM2.5 were significant, which reducing CO2 emissions and atmospheric PM2.5 concentrations in pilot cities by 3.2% and 0.74%. The findings still held after a series of robustness tests. The mechanism analysis showed that improving the public transportation environment was the most important way to achieve the Co-benefits in low-carbon city construction. Moreover, there were regional differences in the Co-benefits of low carbon policies, and the Co-benefits were more significant in cities with high levels of economic development, high levels of industrial structure, and non-resource-based cities. Therefore, we should give full play to the Co-benefits and further accelerate the construction of low-carbon cities to promote the synergistic management of CO2, PM2.5 and other air pollutants.
赵彦云, 陆香怡, 王汶. 低碳城市的CO2与PM2.5减排协同效应分析[J]. 中国环境科学, 2023, 43(1): 465-476.
ZHAO Yan-yun, LU Xiang-yi, WANG Wen. Assessment for Co-benefits of low-carbon city on CO2 and PM2.5 in China. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(1): 465-476.
Dong F, Yu B L, Pan Y L. Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction:Evidence from China[J]. Journal of Cleaner Production, 2019,223:759-771.
[2]
Portugal-Pereira J, Koberle A, Lucena A, et al. Interactions between global climate change strategies and local air pollution:lessons learnt from the expansion of the power sector in Brazil[J]. Climatic Change, 2018,148:293-309.
[3]
Swart R, Amann M, Raes F, et al. A good climate for clean air:Linkages between climate change and air pollution. An Editorial Essay[J]. Climatic Change, 2004,66(3):263-269.
[4]
Houghton J, Ding Y H, Griggs J, et al. Climate change 2001:The scientific basis[R]. Cambridge:Cambridge University Press, 2001.
[5]
宋弘,孙雅洁,陈登科.政府空气污染治理效应评估——来自中国"低碳城市"建设的经验研究[J]. 管理世界, 2019,35(6):95- 108,195. Song H, Sun Y J, Chen D K. Assessment for the effect of government air pollution control policy:empirical evidence from "low-carbon city" construction in China[J]. Management World, 2019,35(6):95- 108,195.
[6]
曾诗鸿,李璠,翁智雄,等.我国碳交易试点政策的减排效应及地区差异[J]. 中国环境科学, 2022,42(4):1922-1933. Zeng S H, Li F, Weng Z X, et al. Study on the emission reduction effect of China's carbon trading pilot policy and regional differences[J]. China Environmental Science, 2022,42(4):1922-1933.
[7]
高原,申珍珍.绿色金融改革政策的碳减排效应[J]. 中国环境科学, 2022,42(10):4849-4859. Gao Y, Shen Z Z. The role of green finance reform policy in carbon reduction[J]. China Environmental Science, 2022,42(10):4849-4859.
[8]
周迪,刘奕淳.中国碳交易试点政策对城市碳排放绩效的影响及机制[J]. 中国环境科学, 2020,40(1):453-464. Zhou D, Liu Y C. Impact of China's carbon emission trading policy on the performance of urban carbon emission and its mechanism[J]. China Environmental Science, 2020,40(1):453-464.
[9]
刘茂辉,刘胜楠,李婧,等.天津市减污降碳协同效应评估与预测[J]. 中国环境科学, 2022,42(8):3940-3949. Liu M H, Liu S N, Li J, et al. Evaluation and prediction of the synergistic effect of pollution reduction and carbon reduction in Tianjin[J]. China Environmental Science, 2022,42(8):3940-3949.
[10]
Alam M S, Hyde B, Duffy P, et al. Analysing the co-benefits of transport fleet and fuel policies in reducing PM2.5 and CO2 emissions[J]. Journal of Cleaner Production, 2018,172:623-634.
[11]
Xue B, Yang M. Co-benefit prevention and control of air pollutants and green-house gases[J]. Reform, 2017,282(8):78-80.
[12]
Vuuren D, Cofala J, Eerens H E, et al. Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe[J]. Energy Policy, 2006,34(4):444-460.
[13]
Markandya A, Armstrong B G, Hales S, et al. Public health benefits of strategies to reduce greenhouse-gas emissions:low-carbon electricity generation[J]. The Lancet, 2009,374(9706):2006-2015.
[14]
李丽平,周国梅,季浩宇.污染减排的协同效应评价研究——以攀枝花市为例[J]. 中国人口·资源与环境, 2010,20(S2):91-95. Li L P, Zhou G M, Ji H Y. Study of Co-benefits Assessment of Pollution Reduction:A Case Study in Panzhihua[J]. China population, resources and environment, 2010,20(S2):91-95.
[15]
王慧慧,曾维华,吴开亚.上海市机动车尾气排放协同控制效应研究[J]. 中国环境科学, 2016,36(5):1345-1352. Wang H H, Zeng W H, Wu K Y. Co-control effects of motor vehicle pollutant emission in Shanghai[J]. China Environmental Science, 2016,36(5):1345-1352.
[16]
周迪,周丰年,王雪芹.低碳试点政策对城市碳排放绩效的影响评估及机制分析[J]. 资源科学, 2019,41(3):546-556. Zhou D, Zhou F N, Wang X Q. Impact of low-carbon pilot policy on the performance of urban carbon emissions and its mechanism[J]. Resources Science, 2019,41(3):546-556.
[17]
禹湘,陈楠,李曼琪.中国低碳试点城市的碳排放特征与碳减排路径研究[J]. 中国人口·资源与环境, 2020,30(7):1-9. Yu X, Chen N, Li M Q. Research on carbon emission characteristics and reduction pathways of low-carbon pilot cities in China[J]. China population, resources and environment, 2020,30(7):1-9.
[18]
张华.低碳城市试点政策能够降低碳排放吗?——来自准自然实验的证据[J]. 经济管理, 2020,42(6):25-41. Zhang H. Can Low-carbon City Construction Reduce Carbon Emissions? Evidence from a Quasi-natural Experiment[J]. Economic Management Journal, 2020,42(6):25-41.
[19]
董梅.低碳城市试点政策的工业污染物净减排效应——基于合成控制法[J]. 北京理工大学学报(社会科学版), 2021,23(5):16-30. Dong M. Analysis of the net emission reduction effect of the industrial pollutants in low-carbon pilot cities-Based on synthetic control method[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021,23(5):16-30.
[20]
韦东明,顾乃华.城市低碳治理与绿色经济增长——基于低碳城市试点政策的准自然实验[J]. 当代经济科学, 2021,43(4):90-103. Wei D M, Gu N H. Low-carbon governance and green economic growth-Quasi-natural experiment from Chinese low-carbon polit policy[J]. Modern Economic Science, 2021,43(4):90-103.
[21]
张兵兵,周君婷,闫志俊.低碳城市试点政策与全要素能源效率提升——来自三批次试点政策实施的准自然实验[J]. 经济评论, 2021, (5):32-49. Zhang B B, Zhou J T, Yan Z J. Low-carbon city pilot policies and total factor energy efficiency improvement:Quasi-natural experiment from the implementation of three batches of pilot policies[J]. Economic Review, 2021,(5):32-49.
[22]
龚梦琪,刘海云,姜旭.中国低碳试点政策对外商直接投资的影响研究[J]. 中国人口·资源与环境, 2019,29(6):50-57. Gong M Q, Liu H J, Jiang X. A study on the impact of China's low-carbon pilot policy on foreign direct investment[J]. China population, resources and environment, 2019,29(6):50-57.
[23]
清华大学碳中和研究院.中国碳核算数据库[DB/OL]. https://www.ceads.net.cn/data/county/. Institute for Carbon Neutrality, Tsinghua University. Carbon Emission Accounts & Datasets for emerging economies[DB/OL]. https://www.ceads.net.cn/data/county/.
[24]
Wei J, Li Z, Lyapustin A, et al. Reconstructing 1-km-resolution high- quality PM2.5 data records from 2000 to 2018 in China:spatiotemporal variations and policy implications[J]. Remote Sensing of Environment, 2021,252,112136.
[25]
Wei J, Li Z, Cribb M, et al. Improved 1km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees[J]. Atmospheric Chemistry and Physics, 2020,20:3273-3289.
[26]
上海经禾信息技术有限公司.中国研究数据服务平台[DB/OL]. https://www.cnrds.com. Shanghai Jinghe Information Technology Co., LTD. Chinese research data services platform[DB/OL]. https://www.cnrds.com.
[27]
中国国家统计局城市社会经济调查司.中国城市统计年鉴[M]. 北京:中国统计出版社, 2020. Department of Urban Socio- Economic Survey of the National Bureau of Statistics of the People's Republic of China. China's urban statistical yearbook[M]. Beijing:China Statistics Press, 2020.
[28]
国家气象信息中心.中国地面气候资料日值数据集(V3.0)[DB/OL]. http://data.cma.cn. National Meteorological Information Center. Daily data sets of Chinese surface climatological data(V3.0)[DB/OL]. http://data.cma.cn.
[29]
Beck T, Levine R, Levkov A. Big bad banks? The winners and losers from bank deregulation in the United States[J]. The Journal of Finance, 2020,65:1637-1667.
[30]
温忠麟,张雷,侯杰泰,等.中介效应检验程序及其应用[J]. 心理学报, 2004,(5):614-620. Wen Z L, Zhang L, Hou J T, et al. Testing and application of the mediating effects[J]. Acta Psychologica Sinica, 2004,(5):614-620.
[31]
Preacher K J, Hayes A F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models[J]. Behav Res Methods, 2008,40(3):879-891.
[32]
贾璐宇,王艳华,王克,等.大气污染防治措施二氧化碳协同减排效果评估[J]. 环境保护科学, 2020,46(6):19-26,43. Jia L Y, Wang Y H, Wang K, et al. Evaluation of carbon dioxide coordination emission reduction based on national air pollution control plan[J]. Environmental Protection Science, 2020,46(6):19- 26,43.
[33]
Chen J, Gao M, Cheng S, et al. County-level CO2 emissions and sequestration in China during 1997~2017[J]. Scientific Data, 2020, 7(1):1-12.
[34]
Lin H X, Jiang P. Analyzing the phased changes of socioeconomic drivers to carbon dioxide and particulate matter emissions in the Yangtze River Delta[J]. Ecological Indicators, 2022,140:109044.
[35]
Dietz T, Rosa E A. Rethinking the environmental impacts of population, affluence and technology[J]. Human Ecology Review, 1994,1(2):277-300.
[36]
黄蕊,王铮,丁冠群,等.基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J]. 地理研究, 2016,35(4):781-789. Huang R, Wang Z, Ding G Q, et al. Trend prediction and analysis of influencing factors of carbon emissions from energy consumption in Jiangsu province based on STIRPAT model[J]. Geographical Research, 2016,35(4):781-789.
[37]
Zhang K, Zhang Z Y, Liang Q M. An empirical analysis of the green paradox in China:From the perspective of fiscal decentralization[J]. Energy Policy, 2017,103(4):203-211.
[38]
严成樑,李涛,兰伟.金融发展、创新与二氧化碳排放[J]. 金融研究, 2016,(1):14-30. Yan C L, Li T, Lan W. Financial development, innovation and carbon Emission[J]. Journal of Financial Research, 2016,(1):14-30.
[39]
李小飞,张明军,王圣杰,等.中国空气污染指数变化特征及影响因素分析[J]. 环境科学, 2012,33(6):1936-1943. Li X F, Zhang M J, Wang S J, et al. Variation characteristics and influencing factors of air pollution index in China[J]. Environmental Science, 2012,33(6):1936-1943.
[40]
李慧杰,王秀兰,王计平,等.2013~2017年间京津冀地区空气质量及影响因素分析[J]. 环境监测管理与技术, 2019,31(2):21-25. Li H J, Wang X L, Wang J P, et al. Analysis on air quality influence factors in Beijing-Tianjin-Hebei region during 2013~2017[J]. The Administration and Technique of Environmental Monitoring, 2019, 31(2):21-25.
[41]
周梦鸽,杨依,孙媛,等.2016~2020年山东省空气质量时空分布特征及影响因素分析[J]. 环境科学, 2022,43(6):2937-2946. Zhou M G, Yang Y, Sun Y, et al. Spatio-temporal characteristics of air quality and influencing factors in Shandong province from 2016 to 2020[J]. Environmental Science, 2022,43(6):2937-2946.
[42]
Auffhammer M, Sun W, Wu J, et al. The decomposition and dynamics of industrial carbon dioxide emissions for 287 Chinese cities in 1998~2009[J]. Journal of Economic Surveys, 2016,30(3):460-481.
[43]
绿色低碳发展智库伙伴.中国城市低碳发展规划峰值和案例研究[M]. 北京:科学出版社, 2016:10-23. Think tank partners for green and low carbon development. Peak value and case study of urban low carbon development planning in China[M]. Beijing:Science Press, 2016:10-23.
[44]
庄贵阳.中国低碳城市试点的政策设计逻辑[J]. 中国人口·资源与环境, 2020,30(3):19-28. Zhuang G Y. Policy design logic of low-carbon city pilots in China[J]. China Population, Resources and Environment, 2020,30(3):19-28.
[45]
赵立祥,赵蓉,张雪薇.碳交易政策对我国大气污染的协同减排有效性研究[J]. 产经评论, 2020,11(3):148-160. Zhao L X, Zhao R, Zhang X W. Study on the effectiveness of carbon trading policy on the coordinated emission reduction of air pollution in China[J]. Forward Position or Economics, 2020,11(3):148-160.
[46]
孙久文,崔雅琪,张皓.黄河流域城市群生态保护与经济发展耦合的时空格局与机制分析[J]. 自然资源学报, 2022,37(7):1673-1690. Sun J W, Cui Y Q, Zhang H. Spatio-temporal pattern and mechanism analysis of coupling between ecological protection and economic development of urban agglomerations in the Yellow River Basin[J]. Journal of Natural Resources, 2022,37(7):1673-1690.
[47]
董战峰,郝春旭,刘倩倩,等.基于熵权法的中国省级环境绩效指数研究[J]. 环境污染与防治, 2016,38(8):93-99. Dong Z F, Hao C X, Liu Q Q, et al. Chinese provincial environmental performance index based on entropy method[J]. Environmental Pollution & Control, 2016,38(8):93-99.
[48]
Zhu Y X, Tian D Z, Feng Y. Effectiveness of entropy weight method in decision-making[J]. Mathematical Problems in Engineering, 2020,2020:3564835.
[49]
罗知,赵奇伟,严兵.约束机制和激励机制对国有企业长期投资的影响[J]. 中国工业经济, 2015,(10):69-84. Luo Z, Zhao Q W, Yan B. The impact of constriction mechanism and incentive mechanism on the long run investment of SOEs[J]. China Industrial Economics, 2015,(10):69-84.
[50]
Li P, Lu Y, Wang J. Does flattening government improve economic performance? Evidence from China[J]. Journal of Development Economics, 2016,123:18-37.
[51]
Abadie A, Drukker D, Herr J L, et al. Implementing matching estimators for average treatment effects in Stata[J]. The stata journal, 2004,4(3):290-311.
[52]
吴建新,郭智勇.基于连续性动态分布方法的中国碳排放收敛分析[J]. 统计研究, 2016,33(1):54-60. Wu J X, Guo Z Y. Research on the convergence of carbon dioxide emissions in China:A continuous dynamic distribution approach[J]. Statistical Research, 2016,33(1):54-60.
[53]
陆锡明,邵丹.北京、上海、杭州机动车对PM2.5的贡献度差异[J]. 城市交通, 2017,15(2):93-95. Lu X M, Shao D. Different PM2.5 emissions by transportation in Beijing, Shanghai and Hangzhou[J]. Urban Transport of China, 2017,15(2):93-95.