Microbial community characteristics and mechanism of pollutant migration and diffusion in uranium tailings reservoir area
AN Yi-fu1, LIAN Guo-xi1,2, WU Xu-yang1, SUN Juan1, GAO Yang1, SONG Wang-wang1
1. The Fourth Research and Design Engineering Institute of China National Nuclear Corporation, Shijiazhuang 050021, China; 2. School of Environment, Beijing Normal University, Beijing 100875, China
Abstract:A typical uranium tailings reservoir in northern China was selected to investigate correlations and mechanism between microbial community characteristics and pollutant migration and diffusion by 16s rRNA high-throughput sequencing, XRD and FTIR. The results showed that microbial diversity in the uranium tailings was generally lower than that in the surrounding soils. The dominant bacteria, such as Proteobacteria, Bacteroidetes, and Cyanobacteria Chloroplast, were significantly negatively correlated to the contaminant diffusion, uranium (U) was one of key factors affecting the succession of microbial communities in this region, which was more likely to occur in large tailings particles with higher uranium levels. Meanwhile, the traditional lime neutralization process promoted the U-Ca agglomeration effect, resulting in 54.84% of more than 1.7mm particle size in the uranium tailings; because the large size uranium tailings lacked mineral carriers (such as feldspar and clay minerals) that could support the microbial community and functional group structures with biological affinity. Finally, the radioactive exposure and natural hydraulic erosion exacerbated the unstable evolution of the microbial community, making the pollutants in uranium tailings be more prone to release.
安毅夫, 连国玺, 武旭阳, 孙娟, 高扬, 宋旺旺. 铀尾渣库区微生物群落特征及污染物迁移扩散机理[J]. 中国环境科学, 2023, 43(5): 2632-2639.
AN Yi-fu, LIAN Guo-xi, WU Xu-yang, SUN Juan, GAO Yang, SONG Wang-wang. Microbial community characteristics and mechanism of pollutant migration and diffusion in uranium tailings reservoir area. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(5): 2632-2639.
袁勤,蔡松.某铀矿山退役治理源项调查[J].采矿技术, 2017,17(1):36-38. Yuan Q, Cai S. Investigation on source items of decommissioning treatment of a uranium mine[J]. Mining Technology, 2017,17(1):36-38.
[2]
张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥:合肥工业大学, 2005. Zhang X. Geochemical characteristics and environmental effects of heavy-metal elements releasing and migrating in Tongling Mine aera, AnHui Province[D]. Hefei:Hefei Polytechnic University, 2005.
[3]
孙娟,高扬,安毅夫,等.人工模拟降雨条件下典型铀尾渣浸出特性研究[J].铀矿冶, 2020,39(4):272-277. Sun J, Gao Y, An Y F, et al. Leaching characteristics of typical uranium tailings under simulated rainfall[J]. Uranium Mining and Metallurgy, 2020,39(4):272-277.
[4]
李蒲姣.铀矿石堆浸尾渣回填处置方法探讨[J].中国矿业, 2002, 11(4):64-67. Li P J. Feasibility of using treated remains from uranium ore leaching heap as backfill material for underground stopes[J]. China Mining Magazine, 2002,11(4):64-67.
[5]
王季斐,童瑶瑶,祝贞科,等.不同水平外源碳在稻田土壤中转化与分配的微生物响应特征[J].环境科学, 2019,40(2):970-977. Wang J F, Tong Y Y, Zhu Z K, et al. Transformation and distribution of soil organic carbon and the microbial characteristics in response to different exogenous carbon input levels in paddy soil[J]. Environmental Science, 2019,40(2):970-977.
[6]
刘荣灿,刘晓霞,冯洋,等.长期复合重金属污染对土壤解磷微生物的影响[J].中国环境科学, 2023,43(2):915-926. Liu R C, Liu X X, Feng Y, et al. Effects of long-term combined heavy pollution on soil phosphate solubilizing microorganisms[J]. China Environmental Science, 2023,43(2):915-926.
[7]
Ma W Y, Sun T, Xu Y M, et al. In‒situ immobilization remediation, soil aggregate distribution, and microbial community composition in weakly alkaline Cd‒contaminated soils:A field study[J]. Environmental Pollution, 2022,292:118327.
[8]
Lee E S, Hollings M J H P. Use of O2 consumption and CO2 production in kinetic cells to delineate pyrite oxidation-carbonate buffering and microbial respiration in unsaturated media[J]. Journal of Contaminant Hydrology, 2003,65(3/4):203-217.
[9]
Komlos J, Mishra B, Lanzirotti A, et al. Real-time speciation of uranium during active bioremediation and U (IV) reoxidation[J]. Journal of Environmental Engineering, 2008,134(2):78-86.
[10]
Yang B, Qi K, Bhusal D R, et al. Soil microbial community and enzymatic activity in soil particle-size fractions of spruce plantation and secondary birch forest[J]. European Journal of Soil Biology, 2020,99:103196.
[11]
Postier B L, Wang H L, Singh A, et al. The construction and use of bacterial DNA microarrays based on an optimized two-stage PCR strategy[J]. BMC Genomics, 2003,4(1):23.
[12]
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet Journal, 2011,17(1):10-12.
[13]
Zhang J, Kobert K, Flouri T, et al. PEAR:a fast and accurate Illumina Paired-End read merger[J]. Bioinformatics, 2014,30(5):614-620.
[14]
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets[J]. Bioinformatics, 2011,27(6):863-864.
[15]
Edgar R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013,10(10):996-998.
[16]
GB/T 14506.30-2010硅酸盐岩石化学分析方法[S]. GB/T 14506.30-2010 Methods for chemical analysis of silicate rocks[S].
[17]
鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社, 1999. Lu R K. Soil agro-chemistrical analysis[M]. Beijing:China Agricultural Science and Technology Press, 1999.
[18]
龙云川,蒋娟,胡菁,等.草海湖滨带沉积物微生物群落对磷形态的影响[J].中国环境科学, 2022,42(4):1869-1876. Long Y C, Jiang J, Hu J, et al. Effects of microbial communities on phosphorus speciation in lakeside sediments of Caohai Lake[J]. China Environmental Science, 2022,42(4):1869-1876.
[19]
Mcmurdie P J, Holmes S. Phyloseq:an R package for reproducible interactive analysis and graphics of microbiome census data[J]. Plos One, 2013,8(4):e61217.
[20]
李艺,张海春,刘媛,等.泗顶矿区剖层土固氮微生物群落结构和丰度[J].中国环境科学, 2022,42(4):1819-1828. Li Y, Zhang H C, Liu Y, et al. Characteristics on the community structure and abundance of diazotrophs from the soil profile in the Siding mine area[J]. China Environmental Science, 2022,42(4):1819-1828.
[21]
张宇镭,党琰,贺平安.利用Pearson相关系数定量分析生物亲缘关系[J].计算机工程与应用, 2005,41(33):83-86,103. Zhang Y L, Dang Y, He P A. Quantitative analysis of the relationship of biology species using pearson correlation coefficient[J]. Computer Engineering and Applications, 2005,41(33):83-86,103.
[22]
Qin S, Hu C, He X, et al. Soil organic carbon, nutrients and relevant enzyme activities in particle-size fractions under conservational versus traditional agricultural management[J]. Applied Soil Ecology, 2010, 45(3):152-159.
[23]
Lin J, Sun W, Desmarais J, et al. Uptake and speciation of uranium in synthetic gypsum (CaSO4·2H2O):Applications to radioactive mine tailings[J]. Journal of Environmental Radioactivity, 2018,181:8-17.
[24]
王文广,张淑苓,陆峻.一些常见铀矿物的红外吸收光谱特征[J].地质科学, 1981,6(3):235-246. Wang W G, Zhang S L, Lu J. Infrared spectral characteristics of some common uranium minerals[J]. Chinese Journal of geology, 1981,6(3):235-246.
[25]
张凤君,宋云鹏,钟爽,等.微生物对scCO2-咸水-砂岩体系中矿物反应的影响[J].中国环境科学, 2019,39(1):281-289. Zhang F J, Song Y P, Zhong S, et al. Impact of microorganisms on the mineral interaction in scCO2-saline-sandstone system[J]. China Environmental Science, 2019,39(1):281-289.
[26]
Bader M, Müller K, Foerstendorf H, et al. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques[J]. Journal of Hazardous Materials, 2017,327(5):225-232.
[27]
Monson R K, Lipson D L, Burns S P, et al. Winter forest soil respiration controlled by climate and microbial community composition[J]. Nature, 2006,439(7077):711-714.
[28]
戴良香,康涛,慈敦伟,等.黄河三角洲盐碱地花生根层土壤菌群结构多样性[J].生态学报, 2019,39(19):7169-7178. Dai L X, Kang T, Ci D W, et al. Comparison of the microbial community in the rhizosphere of peanuts between saline-alkali and non-saline soil at different soil depths and intercropping cultivation in the Yellow River Detlta[J]. Acta Ecologica Sinica, 2019,39(19):7169-7178.
[29]
贾威.人工湿地处理酸性矿山排水的效能及其微生物群落特征研究[D].昆明:云南大学, 2020. Jai W. Study on the efficiency and microbial community characteristics of constructed wetland for the treatment of acid mine drainage[D]. Kunming:Yunnan University, 2020.
[30]
Rodionov D A, Dubchak I, Arkin A, et al. Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria[J]. Genome Biology, 2004,5(11):90-90.
[31]
Zeng T T, Mo G H, Hu Q, et al. Microbial characteristic and bacterial community assessment of sediment sludge upon uranium exposure[J]. Environmental Pollution, 2020,261:114176.
[32]
Griffiths B S, Laurent P. Insights into the resistance and resilience of the soil microbial community[J]. FEMS Microbiology Reviews, 2013, 37(2):119-129.
[33]
Xun W, Liu Y, Li W, et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability[J]. Microbiome, 2021,9(1):35-35.
[34]
Kandeler E, Tscherko D, Bruce K D, et al. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil[J]. Biology and Fertility of Soils, 2000,32(5):390-400.
[35]
Wang J, Zhou W Q, Shi Y L, et al. Uranium sorption on oxyhydroxide minerals by surface complexation and precipitation[J]. Chinese Chemical Letters, 2022,33(7):3461-3467.
[36]
Wang X M, Xu L J, Xu J H, et al. Preparation and capability of activated carbons with high specific surface area by microbial enzymatic and chemical activation[J]. Advanced Materials Research, 2011,236-238:225-228.
[37]
Kasemodel M C, Sakamoto I K, Varesche M, et al. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit[J]. Science of the Total Environment, 2019,675:367-379.