Contributions to O3 and PM2.5 in summer of vegetation types in typical cities in Beijing-Tianjin-Hebei region
CAI Bin1, CHENG Hao-miao2, QI Hao-yun1, LI Ao-zhe1, KANG Tian-fang1
1. Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China; 2. College of Architecture and Urban Planning, Department of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
Abstract:Based on the BVOCs emission inventory, WRF-CMAQ model was used with scenario analysis to investigate the effects of BVOCs emissions on O3 and PM2.5 in the Beijing-Tianjin-Hebei region in July 2018. The effects of BVOCs emissions from different vegetation types on O3 and SOA concentrations in Beijing, Handan, Chengde, Baoding and other cities were quantitatively analyzed, which was verified with the O3 and SOA formation potential method. As the results showed, the contributions of BVOCs emission to O3 in Beijing, Handan, Chengde and Baoding were 30.19%, 24.77%, 35.56% and 26.73%, respectively, and the contributions to SOA were 2.55%, 3.32%, 4.17% and 3.59%, respectively. Trees and orchards showed the greatest influences on O3 and SOA in Beijing and Chengde, while grassland and crops showed the greatest contributions in Handan and Baoding. Additionally, the results of numerical simulation and of potential generation method showed relatively consistent results.
蔡斌, 程昊淼, 亓浩雲, 李奥哲, 康天放. 京津冀植被类型对典型城市夏季O3和PM2.5贡献[J]. 中国环境科学, 2023, 43(6): 2734-2743.
CAI Bin, CHENG Hao-miao, QI Hao-yun, LI Ao-zhe, KANG Tian-fang. Contributions to O3 and PM2.5 in summer of vegetation types in typical cities in Beijing-Tianjin-Hebei region. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(6): 2734-2743.
Lee B, Wang J. Concentration variation of isoprene and its implications for peak ozone concentration[J]. Atmospheric Environment, 2006,40(28):5486-5495.
[2]
Sartelet K N, Couvidat F, Seigneur C, et al. Impact of biogenic emissions on air quality over Europe and North America[J]. Atmospheric Environment, 2012,53:131-141.
[3]
Wang J L, Chew C, Chang C Y, et al. Biogenic isoprene in subtropical urban settings and implications for air quality[J]. Atmospheric Environment, 2013,79:369-379.
[4]
王雪梅,符 春,梁桂雄.城市区域臭氧浓度变化的研究[J]. 环境科学研究, 2001,14(5):1-3. Wang X M, Fu C, Liang G X. Study on the ozone concentration in urban areas[J]. Research of Environmental Sciences, 2001,14(5):1-3.
[5]
谢军飞,李延明.植物源挥发性有机化合物排放清单的研究进展[J]. 环境科学, 2013,34(12):4779-4786. Xie J F, Li Y M. Research Advances on Volatile Organic Compounds Emission Inventory of Plants[J]. Environmental Science, 2013,34(12):4779-4786.
[6]
Guenther A, Hewitt C N, Erickson D, et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research Atmospheres, 1995,100(D5):8873-8892.
[7]
Laothawornkitkul J, Taylor J E, Paul N D, et al. Biogenic volatile organic compounds in the Earth system[J]. The New phytologist, 2009,183(1):27-51.
[8]
Atkinson R. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment, 2000,34:2063-2101.
[9]
Li J, Wu R, Li Y, et al. Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China[J]. Science of the Total Environment, 2016,557(1):531-541.
[10]
吕 喆,韩力慧,程水源,等.北京城区冬夏季含碳气溶胶浓度特征及区域传输对灰霾形成影响[J]. 北京工业大学学报, 2018,44(3):463-472. Lü Z, Han L H, Cheng S Y, et al. Characteristics of Carbonaceous Aerosols and Influence of Regional Transport on Haze Formation in Winter and Summer in Urban of Beijing[J]. Journal of Beijing University of Technology, 2018,44(3):463-472.
[11]
Lam Y F, Fu J S, Wu S, et al. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States[J]. Atmospheric Chemistry & Physics, 2011,11(10):4789-4806.
[12]
Williams J E, Scheele M P, Velthoven P F J V, et al. The influence of biogenic emissions from Africa on tropical tropospheric ozone during 2006:a global modeling study[J]. Atmospheric Chemistry & Physics, 2009,9(15):10367-10427.
[13]
Castell N, Stein A F, Salvador R, et al. The impact of biogenic VOC emissions on photochemical ozone formation during a high ozone pollution episode in the Iberian Peninsula in the 2003 summer season[J]. Advances in Science and Research, 2008,2(1):9-15.
[14]
İm U, Poupkou A, İncecik S, et al. The Impact of Anthropogenic and Biogenic Emissions on Surface Ozone Concentrations in Istanbul[J]. Science of the Total Environment, 2010,409(7):1255-1265.
[15]
Kondo A, Hai B, Shrestha K L, et al. Evaluation of Biogenic Volatile Organic Compound Emissions and Its Impact of Ozone Formation[J]. Journal of the Institute of Engineering, 2009,7(1):48-55.
[16]
Lee K Y, Kwak K H, Ryu Y H, et al. Impacts of biogenic isoprene emission on ozone air quality in the Seoul metropolitan area[J]. Atmospheric Environment, 2014,96(7):209-219.
[17]
谢 旻,王体健,江 飞,等.NOx和VOCs自然源排放及其对中国地区对流层光化学特性影响的数值模拟研究[J]. 环境科学, 2007, 28(1):32-40. Xie M, Wang T J, Jiang F, et al. Modeling of Natural NOx and VOC Emissions and Their Effects on Tropospheric Photochemistry in China[J]. Environmental Science, 2007,28(1):32-40.
[18]
朱轶梅.亚热带城乡区域BVOC排放的研究[D]. 杭州:浙江大学, 2011. Zhu Y M. Biogenic VOC inventories of subtropical urban-rural areas[D]. Hangzhou:Zhejiang University, 2011.
[19]
李 浩,李 莉,黄 成,等.2013年夏季典型光化学污染过程中长三角典型城市臭氧来源识别[J]. 环境科学, 2015,36(1):1-10. Li H, Li L, Huang C, et al. Ozone Source Apportionment at Urban Area during a Typical Photochemical Pollution Episode in the Summer of 2013in the Yangtze River Delta[J]. Environmental Science, 2015, 36(1):1-10.
[20]
Wei X L, Li Y S, Lam K S, et al. Impact of biogenic VOC emissions on a tropical cyclone-related ozone episode in the Pearl River Delta region, China[J]. Atmospheric Environment, 2007,41(36):7851-7864.
[21]
张 蔷,李令军,赵文慧,等.北京森林BVOCs排放特征及对区域空气质量的影响[J]. 中国环境科学, 2021,41(2):622-632. Zhang Q, Li L J, Zhao W H, et al. Emission characteristics of VOCs from forests and its impact on regional air quality in Beijing[J]. China Environmental Science, 2021,41(2):622-632.
[22]
Xie X, Shao M, Liu Y, et al. Estimate of initial isoprene contribution to ozone formation potential in Beijing, China[J]. Atmospheric Environment, 2008,42(24):6000-6010.
[23]
Yang G A, Mm A, Fy A, et al. Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities[J]. The Science of the total environment, 2021,814:152654.
[24]
牛 元,程水源,欧盛菊,等.基于光化学指标法的邯郸市臭氧生成敏感性[J]. 环境科学, 2021,42(6):2691-2698. Niu Y, Cheng S Y, Ou S J, et al. Applying Photochemical Indicators to Analyze Ozone Sensitivity in Handan[J]. Environmental Science, 2021,42(6):2691-2698.
[25]
夏春林,肖 琳.京津冀天然源挥发性有机物排放研究[J]. 环境科学学报, 2019,39(8):2680-2689. Xia C L, Xiao L. Estimation of biogenic volatile organic compounds emissions in Jing-Jin-Ji[J]. Acta Scientiae Circumstantiae, 2019, 39(8):2680-2689.
[26]
亓浩雲,王晓琦,程水源,等.2000~2020年京津冀BVOCs排放量估算及时空分布特征研究[J]. 中国环境科学, 2022,42(4):1501-1509. QI H Y, Wang X Q, Cheng S Y, et al. Estimation of BVOCs emissions from Beijing, Tianjin and Hebei from 2000 to 2020 and its temporal and spatial distribution characteristics[J]. China Environmental Science, 2022,42(4):1501-1509.
[27]
樊 冲.河北省森林植物源挥发性有机物排放量研究[D]. 北京:北京林业大学, 2019. Fan C. Study on Biogenic Volatile Organic Compounds Emission from Forest Plants in Hebei Province[D]. Beijing:Beijing Forestry University, 2019.
[28]
温 维,韩力慧,代 进,等.唐山夏季PM2.5污染特征及来源解析[J]. 北京工业大学学报, 2014,40(5):751-758. Wen W, Han L H, Dai J, et al. Characteristics of PM2.5 Pollution and Source Apportionment in Tangshan During Summer[J]. Journal of Beijing University of Technology, 2014,40(5):751-758.
[29]
陈艳梅,高吉喜,年 蔚,等.风域视角京津冀生态廊道空间格局识别[J]. 中国环境科学, 2021,41(7):3418-3426. Chen Y M, Gao J X, Nian W, et al. Identification of ecological corridors' spatial pattern in Beijing-Tianjin-Hebei region from the perspective of wind domain[J]. China Environmental Science, 2021, 41(7):3418-3426.
[30]
谢绍东,田晓雪.挥发性和半挥发性有机物向二次有机气溶胶转化的机制[J]. 化学进展, 2010,22(4):727-732. Xie S D, Tian X X. Formation Mechanism of Secondary Organic Aerosols from the Reaction of Volatile and Semi-Volatile Compounds[J]. Progress in Chemistry, 2010,22(4):727-732.
[31]
彭春梅.热带海岛地区植物源VOCs排放特征及对区域臭氧贡献的研究[D]. 海口:海南大学, 2020. Peng C M. Characteristics of VOCs emission from plant sources in tropical islands and its contribution to regional ozone[D]. Haikou:Hainan University, 2020.
[32]
Carter W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Journal of the Air and Waste Management Association, 1994,44(7):881-899.
[33]
Mentel T F, Kleist E, Andres S, et al. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks[J]. Atmospheric Chemistry and Physics, 2013,13(17):8755-8770.
[34]
Carter W P L. Reactivity estimates for selected consumer product compounds[R]. California:Center for Environmental Research and Technology, College of Engineering, University of California, February, 19,2008.
[35]
Grosjean D. In situ organic aerosol formation during a smog episode:Estimated production and chemical functionality[J]. Atmospheric Environment, Part A, General Topics, 1992,26(6):953-963.
[36]
陈俊刚.森林植物排放挥发性有机物及对二次污染物生成的影响[D]. 北京:北京林业大学, 2017. Chen J G. Volatile organic compounds emitted from forest plants and its effects on the formation of secondary pollutants[D]. Beijing:Beijing Forestry University, 2017.
[37]
井潇溪.北京市森林植物挥发性有机物排放研究[D]. 北京:北京林业大学, 2020. Jing X X. Study on Biogenic Volatile Organic Compounds Emission from Forest Plants in Beijing[D]. Beijing:Beijing Forestry University, 2020.
[38]
Liu S, Xing J, Zhang H, et al. Climate-driven trends of biogenic volatile organic compound emissions and their impacts on summertime ozone and secondary organic aerosol in China of the 2050s[J]. Atmospheric Environment, 2019,218:117020.
[39]
Wu K, Yang X Y, Chen D, et al. Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China[J]. Atmospheric Research, 2020, 231:1-11.
[40]
Hu J, Wang P, Ying Q, et al. Modeling biogenic and anthropogenic secondary organic aerosol in China[J]. Atmospheric Chemistry and Physics, 2017,17(1):77-92.
[41]
Wang P, Ying Q, Zhang H, et al. Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories[J]. Environmental Pollution, 2018,237:756-766.
[42]
Ren Y, Qu Z, Du Y, et al. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies[J]. Environmental Pollution, 2017,230:849- 861.
[43]
伏志强,戴春皓,王章玮,等.长沙市夏季大气臭氧生成对前体物的敏感性分析[J]. 环境化学, 2019,38(3):531-538. Fu Z Q, Dai C H, Wang Z W, et al. Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha[J]. Environmental Chemistry, 2019,38(3):531-538.
[44]
张鸿宇,王 媛,卢亚灵,等.我国臭氧污染控制分区及其控制类型识别[J]. 中国环境科学, 2021,41(9):4051-4059. Zhang H Y, Wang Y, Lu Y L, et al. Identification of ozone pollution control zones and types in China[J]. China Environmental Science, 2021,41(9):4051-4059.
[45]
Han Z, Ueda H, Matsuda K. Model study of the impact of biogenic emission on regional ozone and the effectiveness of emission reduction scenarios over eastern China[J]. Tellus B, 2005,57(1):12-27.
[46]
周广强,谢 英,吴剑斌,等.基于WRF-Chem模式的华东区域PM2.5预报及偏差原因[J]. 中国环境科学, 2016,36(8):2251-2259. Zhou G Q, Xie Y, Wu J B, et al. Based on WRF-Chem model, the PM2.5 forecast and deviation reason in East China region[J]. Chinese Environmental Science, 2016,36(8):2251-2259.