Characteristics and mechanism of nitrate on adsorption of monothioarsenate in soil
SHI Qian, SHAN Hui-mei, LIU Ji-gang, LI Zhe-ying, ZHANG Jin-xian
Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Collaborative Innovation Center for Water Pollution Control and Water Security in Karst Areas, Guilin University of Technology, Guilin 541004, China
Abstract:In this study, batch experiments were carried out to investigate the effects of NO3- (0~50mg/L) addition on monothioarsenate (MTA) adsorption by natural soil. Characterization analysis of XRD, SEM-EDS, XPS, etc. was conducted to further identify the mechanisms. Results showed that: (1) the equilibrium adsorption capacity of MTA on soil (Qe) gradually increased with the increase of NO3- concentrations. Specifically, when the NO3- concentration increased from 0to 50mg/L, Qe increased from 27.73mg/kg to 32.95mg/kg,respectively. Besides, SEM-EDS results showed that after the reaction, the As content of the soil increased slightly with the increasing concentrations of NO3- in the reaction system. These findings indicated that the presence of NO3- can promote the adsorption of MTA on soil, and higher concentrations of NO3- lead to more MTA adsorbed by soil. (2) After MTA adsorption, the NO3- content in the solution decreased to various degrees and NH4+ was detected in the MTA-soil-NO3- system, meanwhile aluminum oxides and iron oxides containing arsenic and nitrogen were formed on the surface of soil. This was attributed to the fact that MTA was mainly adsorbed by iron and aluminum oxides in soil. When NO3- was present in the reaction system, accompanied by NO3- partially reduction to NH4+, Fe(II) was oxidized to Fe(III) (hydrogen) oxide on the soil surface, which helped improve the MTA adsorption.
石谦, 单慧媚, 刘吉刚, 李哲映, 张进贤. 硝酸盐对土壤吸附一硫代砷的影响特征及机理[J]. 中国环境科学, 2023, 43(9): 4750-4759.
SHI Qian, SHAN Hui-mei, LIU Ji-gang, LI Zhe-ying, ZHANG Jin-xian. Characteristics and mechanism of nitrate on adsorption of monothioarsenate in soil. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(9): 4750-4759.
Smith A, Lopipero P, Bates M, et al. Arsenic epidemiology and drinking water standands[J]. Science, 2002,296:2145-2146.
[2]
汤洁,卞建民,李昭阳,等.中国饮水型砷中毒区的水化学环境与砷中毒关系[J]. 生态毒理学报, 2013,8(2):222-229. Tang J, Bian J M, Li Z Y, et al. Relationship between hydrochemical environment and arsenism in areas with arsenic poisoning drinking water in China[J]. Asian Journal of Ecotoxicolog, 2013,8(2):222-229.
[3]
郭华明,杨素珍,沈照理.富砷地下水研究进展[J]. 地球科学进展, 2007,22(11):1109-1117. Guo H M, Yang S Z, Shen Z L. High arsenic groundwater in the world:Overview and research perspectives[J]. Advances in Earth Science, 2007,22(11):1109-1117.
[4]
邓安琪,董兆敏,高群,等.中国地下水砷健康风险评价[J]. 中国环境科学, 2017,37(9):3556-3565. Deng A Q, Dong Z M, Gao Q, et al. Health risk assessment of arsenic in groundwater across China[J]. China Environmental Science, 2017,37(9):3556-3565.
[5]
潘敖然,单慧媚,彭三曦,等.基于热力学模拟河套平原高砷地下水中硫代砷形态分布特征[J]. 地球科学进, 2018,33(11):1169-1180. Pan A R, Shan H M, Peng S X, et al. Thermodynamic modeling of thioarsenic species distribution in high As groundwater in Hetao Plain[J]. Advances in Earth Science, 2018,33(11):1169-1180.
[6]
余倩,张宇,邬建勋,等.江汉平原沉积物中磷酸盐与砷的竞争吸附机制[J]. 中南民族大学学报(自然科学版), 2020,39(4):337-342. Yu Q, Zhang Y, Wu J X, et al. Competitive adsorption mechanism of phosphate and arsenic in sediments from Jianghan Plain[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2020,39(4):337-342.
[7]
赵欣,孙书堂,谢先军.硫代砷化合物的合成及其在地下水中的赋存特征:以大同盆地为例[J]. 地质科技通报, 2021,40(2):131-137. Zhao X, Sun S, T Xie X J. Synthesis of thioarsenate compounds and their occurrence characteristics in groundwater:A case study of Datong Basin[J]. Bulletin of Geological Science and Technology, 2021,40(2):131-137.
[8]
Wang J, Halder D, Wegner L, et al. Redox dependence of thioarsenate occurrence in paddy soils and the rice rhizosphere[J]. Environmental Science & Technology, 2020,54(7):3940-3950.
[9]
Planer-Friedrich B, Kuhnlenz T, Halder D, et al. Thioarsenate toxicity and tolerance in the model system arabidopsis thaliana[J]. Environmental Science & Technology, 2017,51(12):7187-7196.
[10]
Kerl C F, Rafferty C, Clemens S, et al. Monothioarsenate uptake, transformation, and translocation in rice plants[J]. Environmental Science & Technology, 2018,52(16):9154-9161.
[11]
Chen C, Yang B, Shen Y, et al. Sulfate addition and rising temperature promote arsenic methylation and the formation of methylated thioarsenates in paddy soils[J]. Soil Biology and Biochemistry, 2021, 154:108129.
[12]
Sadler R, Maetam B, Edokpolo B, et al. Health risk assessment for exposure to nitrate in drinking water from village wells in Semarang, Indonesia[J]. Environ Pollution, 2016,216:738-745.
[13]
Temkin A, Evans S, Manidis T, et al. Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water[J]. Environmental Research, 2019,176:108442.
[14]
Toolabi A, Bonyadi Z, Paydar M, et al. Spatial distribution, occurrence, and health risk assessment of nitrate, fluoride, and arsenic in Bam groundwater resource, Iran[J]. Groundwater for Sustainable Development, 2021,12:100543.
[15]
张迪,郭华明,倪萍,等.氧化还原条件对地下水中砷释放迁移的影响——以通榆县高砷地下水为例[J]. 第四纪研究, 2014,34(5):1072-1081. Zhang D, Guo H M, Ni P, et al. Effect of redox conditions on arsenic release and transport in groundwater systems:A case study in the Tongyu Couny.[J]. Quaternary Sciences, 2014,34(5):1072-1081.
[16]
王程,韩双宝,张福存,等.银北平原浅层高砷地下水砷富集水化学特征研究[J]. 地质与资源, 2017,26(4):383-389. Wang C, Han S B, Zhang F C, et al. Research on the hydrochemical characteristics of high-arsenic groundwater in the shallow aquiter of northern Yin Chuan Plain.[J]. Geology and Resources, 2017,26(4):383-389.
[17]
张昌延,何江涛,张小文,等.珠江三角洲高砷地下水赋存环境特征及成因分析[J]. 分析化学, 2018,39(8):3631-3639. Zhang C Y, He J T, Zhang X W, et al. Geochemical characteristics and genesis analyses of high-arsenic groundwater in the Pearl River Delta[J]. Chinese Journal of Analytical Chemistry, 2018,39(8):3631-3639.
[18]
Huang G X, Chen Z Y, Liu F, et al. Impact of human activity and natural processes on groundwater arsenic in an urbanized area (South China) using multivariate statistical techniques[J]. Environmental Science and Pollution Research, 2014,21:13043-13054.
[19]
吕晓立,郑跃军,韩占涛,等.城镇化进程中珠江三角洲地区浅层地下水中砷分布特征及成因[J]. 地学前缘, 2022,29(3):88-98. LÜ X L, Zheng Y J, Han Z T, et al. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization[J]. Earth Science Frontiers, 2022,29(3):88-98.
[20]
赵凯,郭华明,高存荣.北方典型内陆盆地高砷地下水的水化学特征及处理技术[J]. 现代地质, 2015,29(2):351-360. Zhao K, Guo H M, Gao C R, et al. Chemical characteristics and remediation of high asenic groundwater in Typical Inland Basins of North China[J]. Geoscience, 2015,29(2):351-360.
[21]
Xie X, Wang Y, Su C, et al. Arsenic mobilization in shallow aquifers of Datong Basin:Hydrochemical and mineralogical evidences[J]. Journal of Geochemical Exploration, 2008,98(3):107-115.
[22]
Guo Q H, Guo H M, Yang Y, et al. Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, P.R. China[J]. Journal of Hydrology, 2014,518:464-476.
[23]
Xiu W, Wu M, Nixon S L, et al. Genome-resolved metagenomic analysis of groundwater:Insights into arsenic mobilization in biogeochemical interaction networks[J]. Environ Sci Technol, 2022, 56(14):10105-10119.
[24]
Zhu X B, Zeng X C, Chen X M, et al. Inhibitory effect of nitrate/nitrite on the microbial reductive dissolution of arsenic and iron from soils into pore water[J]. Ecotoxicology, 2019,28(5):528-538.
[25]
Liu E Y, Xie Z M, Fang J H, et al. Nitrate-mediated biomigration and transformation of As/Fe in arsenic-bearing ferrihydrite[J]. Applied Geochemistry, 2022,138:105204.
[26]
Lin Z J, Wang X, Wu X, et al. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system[J]. Environmental Pollution, 2018,243:1015-1025.
[27]
Wang X Q, Liu T X, Li F B, et al. Effects of simultaneous application of ferrous iron and nitrate on arsenic accumulation in rice grown in contaminated paddy soil[J]. ACS Earth and Space Chemistry, 2018, 2(2):103-111.
[28]
Chen Z L, AN L H, Wei H, et al. Nitrate alleviate dissimilatory iron reduction and arsenic mobilization by driving microbial community structure change[J]. Surfaces and Interfaces, 2021,26:101421.
[29]
Burton E D, Johnston S G, Planer-Friedrich B. Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid[J]. Chemical Geology, 2013,343:12-24.
[30]
Keller N S, Stefansson A, Sigfusson B. Arsenic speciation in natural sulfidic geothermal waters[J]. Geochimica et Cosmochimica Acta, 2014,142:15-26.
[31]
Song J, Jia S Y, Yu B, et al. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate[J]. Journal of Hazardous Materials, 2015,294(30):70-79.
[32]
Lin J, Hu S, Liu T, et al. Coupled kinetics model for microbially mediated arsenic reduction and adsorption/desorption on iron oxides:role of arsenic desorption induced by microbes[J]. Environmental science & technology, 2019,53(15):8892-8902.
[33]
马晟,杨晓莉,刘朝柱,等.三种含钙物质对土壤砷植物有效性的影响[J]. 中国环境科学, 2022,42(12):5785-5795. Ma S, Yang X L, Liu C Z, et al. Effects of three calcium substances on plant bioavailability of arsenic in soil[J]. China Environmental Science, 2022,42(12):5785-5795.
[34]
吴萍萍,曾希柏.人工合成铁、铝矿对As(V)吸附的研究[J]. 中国环境科学, 2011,31(4):603-610. Wu P P, Zeng X B. Study on arsenate adsorption by synthetic iron and aluminum oxides/hydroxides. China Environmental Science, 2011, 31(4):603-610.
[35]
廖丹雪,单慧媚,彭三曦,等.一硫代砷酸盐在介质上的吸附特征及机制[J]. 环境科学, 2020,41(1):284-292. Liao D X, Shan H M, Peng S X, et al. Characteristics and mechanism of monothioarsenate adsorption on sand, sediment, and goethite[J]. Environmental Science, 2020,41(1):284-292.
[36]
廖丹雪,单慧媚,张进贤,等.一硫代砷在针铁矿上的吸附及影响因素[J]. 环境科学, 2020,41(7):3337-3344. Liao D X, Shan H M, Zhang J X, et al. Characteristics and influencing factors of monothioarsenate adsorption on goethite[J]. Environmental Science, 2020,41(7):3337-3344.
[37]
张进贤,单慧媚,廖丹雪,等.磷酸盐对土壤吸附一硫代砷的影响[J]. 中国环境科学, 2022,42(8):3849-3857. Zhang J X, Shan H M, Liao D X, et al. Effect of phosphate on monothioarsenate adsorption to soil[J]. China Environmental Science, 2022,42(8):3849-3857.
[38]
Shan H M, Zhang J X, Peng S X, et al. Sorption of monothioarsenate to the natural sediments and its competition with arsenite and arsenate[J]. Int J Environ Res Public Health, 2021,18(23):12839.
[39]
Shan H M, Liao D X, Zhan H B, et al. Development of LC-HGAFS method for direct measurement of monothioarsenate and application for its adsorption characteristics[J]. Applied Geochemistry, 2020,122(104708).
[40]
童佳荣,单慧媚,刘崇炫,等.硫代砷形态测试分析技术及环境行为特征[J]. 环境科学与技术, 2018,41(3):156-162. Tong J R, Shan H M, Liu C X, et al. tudy on thioarsenic species:Analytical techniques and their environmental behavior[J]. Environmental Science & Technology, 2018,41(3):156-162.
[41]
王敏黛,郭清海,郭伟,等.硫代砷化物的合成、鉴定和定量分析方法研究[J]. 分析化学, 2016,44(11):1715-1720. Wang M D, Guo Q H, Guo W, et al. Synthesis, identification and quantitative analysis of aqueous thioarsenates[J]. Chinese Journal of Analytical Chemistry, 2016,44(11):1715-1720.
[42]
熊峰,甘义群,段艳华.江汉平原地下水中氮素与砷迁移富集的相关性研究[J]. 安全与环境工程, 2015,22(2):39-43,48. Xiong F, Gan Y Q, Duan Y H, et al. Analysis of relationship between nitrogen and the migration and enrichment of arsenic in groundwater in the Jianghan Plain[J]. Safety and Environmental Engineering, 2015, 22(2):39-43,48.
[43]
李红梅,邓娅敏,罗莉威,等.江汉平原高砷含水层沉积物地球化学特征[J]. 地质科技情报, 2015,34(3):178-184. Li H M, Deng Y M, Luo L W, et al. Geochemistry of high arsenic shallow aquifers sediment of the Jianghan Plain[J]. Geological Science and Technology Information, 2015,34(3):178-184.
[44]
段艳华,甘义群,郭欣欣,等.江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析[J]. 地质科技情报, 2014,33(2):140-147. Duan Y H, Gan Y Q, Guo X X, et al. Hydrogeochemistry and arsenic contamination of groundwater in the monitoring field, JiangHan Plain[J]. Geological Science and Technology Information, 2014,33(2):140-147.
[45]
甘义群,王焰新,段艳华,等.江汉平原高砷地下水监测场砷的动态变化特征分析[J]. 地学前缘, 2014,21(4):37-49. Gan Y Q, Wang Y X, Duan Y H, et al. Dynamic changes of groundwater arsenic concentration in the monitoring field site, JiangHan Plain[J]. Earth Science Frontiers, 2014,21(4):37-49.
[46]
邬建勋,余倩,蒋庆肯,等.江汉平原高砷地下水与含水层沉积物的地球化学特征[J]. 地质科技情报, 2019,38(1):250-257. Wu J X, Yu Q, Jiang Q K, et al. Geochemical characteristics of groundwater and aquifer sediments in high arsenic groundwater in Jianghan Plain[J]. Geological Science and Technology Information, 2019,38(1):250-257.
[47]
杨静,肖天昀,李海波,等.江汉平原地下水中硝酸盐的分布及影响因素[J]. 环境科学, 2018,38(2):710-718. Yang J, Xiao T Y, Li H B, et al. Spatial distribution and influencing factors of NO3-N concentration in groundwater in Jianghan Plain[J]. China Environmental Science, 2018,38(2):710-718.
[48]
HJ/T 345-2007水质铁的测定邻菲啰啉分光光度法[S]. HJ/T 345-2007 Water quality-Determination of iron-phenanthroline spectrophotometric method[S].
[49]
胡林彦,张庆军,沈毅.X射线衍射分析的实验方法及其应用[J]. 河北理工学院学报, 2004,26(3):83-86,93. Hu L Y, Zhang Q J, Shen Y. Experimental methods and applications of X-ray diffraction analysis[J]. Journal of Hebei Polytechnic University, 2004,26(3):83-86,93.
[50]
朱琳.扫描电子显微镜及其在材料科学中的应用[J]. 吉林化工学院学报, 2007,2:81-84,92. Zhu L. SEM and its application in material science[J]. Journal of Jilin Institute of Chemical Technology, 2007,2:81-84,92.
张志军,刘炯天,冯莉,等.基于Langmuir理论的平衡吸附量预测模型[J]. 东北大学学报(自然科学版), 2011,32(5):749-751,756. Zhang Z J, Liu J T, Feng L, et al. A prediction model based on langmuir theory for equilibrium adsorption amount[J]. Journal of Northeastern University (Natural Science), 2011,32(5):749-751,756.
[53]
Mozaffari M, Kordzadeh-Kermani V, Ghalandari V, et al. Adsorption isotherm models:A comprehensive and systematic review (2010~2020)[J]. Science of The Total Environment, 2022,812:151334.
[54]
Li X, Qiao J, Li S, et al. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil[J]. Environ Sci Technol, 2020,54(4):2172-2181.
[55]
严克涛,郭清海.地下水环境中的硫代砷研究进展[J]. 水文地质工程地质, 2019,46(6):132-141,178. Yan K T, Guo Q H. Anvances in thioarsenic in groundwater systems[J]. Hydrogeology and Engineering Geology, 2019,46(6):132-141, 178.
[56]
Zhang J, Zhao S, Xu Y, et al. Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils[J]. Environ Sci Technol, 2017, 51(8):4377-4386.
[57]
陈鹏程,李晓敏,李芳柏.硝酸盐还原和亚铁氧化对贪铜菌还原砷的影响[J]. 生态环境学报, 2017,26(2):328-334. Chen P C, Li X M, Li F B. Effects of nitrate reduction and ferrous oxidation on microbial arsenate reduction by Cupriavidusmetallidurans Paddy-2[J]. Ecology and Environmental Sciences, 26(2):328-334.
[58]
郭华明,高志鹏,修伟.地下水氮循环与砷迁移转化耦合的研究现状和趋势[J]. 水文地质工程地质, 2022,49(3):153-163. Guo H M, Gao Z P, Xiu W. Research status and trend of coupling between nitrogen and arsenic migration and transformation in groundwater systems[J]. Hydrogeology and Engineering Geology, 2022,49(3):153-163.