Research progress on the marine photochemical release of reactive volatile organic compounds
ZHANG Shu-ying, LI Jian-long, DU Lin
Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
Abstract:The emission of volatile organic compounds (VOCs) significantly contributes to the atmospheric oxidative balance and secondary organic aerosol (SOA) formation, thereby influencing global climate. Reactive substances such as methane, non-methane hydrocarbons, dimethyl sulfide, and halocarbons in the ocean are important components of VOCs, primarily produced through biological and non-biological processes. To date, substantial research has been conducted on the source-sink processes of marine VOCs and their response mechanisms to environmental factors. However, much of this research has focused on biological processes, overlooking the contributions of photochemical processes involving dissolved organic matter (DOM) in the sea surface (micro) layer, which may result in an underestimation of their emissions. In recent years, marine photochemistry, particularly the photochemical processes of DOM in the sea surface micro-layer, has gained increasing attention. This review systematically examines the research progress on the sources and emission fluxes of marine VOCs, with a focus on the mechanisms of VOCs production via DOM photochemistry, their response to environmental factors, and their implications for climate change. Furthermore, future research directions are proposed from the perspectives of technological innovation, mechanism exploration, and environmental assessment. Long-term observation and simulation studies of photochemical processes of DOM in the sea surface micro-layer are highlighted as crucial for revealing the response of marine VOCs photochemical production to human activities and its impact on climate change.
张舒颖, 李建龙, 杜林. 海洋光化学释放活性挥发性有机物的研究进展[J]. 中国环境科学, 2025, 45(4): 1777-1788.
ZHANG Shu-ying, LI Jian-long, DU Lin. Research progress on the marine photochemical release of reactive volatile organic compounds. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(4): 1777-1788.
[1] Helmig D, Stephens C R, Caramore J, et al. Seasonal behavior of non-methane hydrocarbons in the firn air at Summit, Greenland[J]. Atmospheric Environment, 2014,85:234-246. [2] Yu Z J, Li Y. Marine volatile organic compounds and their impacts on marine aerosol-a review[J]. Science of the Total Environment, 2021, 768:1-18. [3] Riva M, Budisulistiorini S H, Zhang Z F, et al. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol[J]. Atmospheric Environment, 2016,130:5-13. [4] Liakakou E, Bonsang B, Williams J, et al. C2-C8NMHCs over the eastern mediterranean:Seasonal variation and impact on regional oxidation chemistry[J]. Atmospheric Environment, 2009,43(35):5611-5621. [5] Al Madhoun W A, Ramli N A, Yahaya A S, et al. Temporal distribution of non-methane hydrocarbon (NMHC) in a developing equatorial island[J]. Air Quality Atmosphere and Health, 2016,9(3):303-310. [6] Halsey K H, Giovannoni S J. Biological controls on marine volatile organic compound emissions:A balancing act at the sea-air interface[J]. Earth-Science Reviews, 2023,240. [7] Novak G A, Kilgour D B, Jernigan C M, et al. Oceanic emissions of dimethyl sulfide and methanethiol and their contribution to sulfur dioxide production in the marine atmosphere[J]. Atmospheric Chemistry and Physics, 2022,22(9):6309-6325. [8] Kansal A. Sources and reactivity of NMHCs and VOCs in the atmosphere:A review[J]. Journal of Hazardous Materials, 2009, 166(1):17-26. [9] Meskhidze n, Nenes A. Phytoplankton and cloudiness in the Southern Ocean[J]. Science, 2006,314(5804):1419-1423. [10] Gantt B, Meskhidze N, Kamykowski D. A new physically-based quantification of marine isoprene and primary organic aerosol emissions[J]. Atmospheric Chemistry and Physics, 2009,9(14):4915-4927. [11] Wilson D F, Swinnerton J W, Lamontagne R A. Production of carbon monoxide and gaseous hydrocarbons in seawater-relation to dissolved organic carbon[J]. Science, 1970,168(3939):1577-1579. [12] Brüggemann M, Hayeck N, George C. Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols[J]. Nature Communications, 2018,9(2101):1-8. [13] Moran E F, Ojima D, Mcconnell W, et al. Global land project:Science plan and implementation strategy[J]. IGBP report, 2005,53. [14] Swinnerton J W, Linnenbom V J. Gaseous hydrocarbons in sea water-determination[J]. Science, 1967,156(3778):1119-1120. [15] 李思雨.东海DMS时空变化特征及其影响过程分析[D].天津:天津科技大学, 2023. Li S Y. Temporal and spatial variations of DMS and its influence processes in the East China Sea[D]. Tianjin:Tianjin University of Science and Technology, 2023. [16] 王健,李建龙,吴英璀,等.长江口及邻近海域异戊二烯的浓度变化及海-气通量研究[J].环境科学学报, 2019.39(7):2288-2295. Wang J, Li J L, Wu Y C, et al. Concentration variation and sea-to-air flux of isoprene in the Yangtze River Estuary and the adjacent East China Sea[J]. Acta Scientiae Circumstantiae, 2019,39(7):2288-2295. [17] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007,107(2):486-513. [18] Mcgenity T J, Crombie A T, Murrell J C. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on earth[J]. Isme Journal, 2018,12(4):931-941. [19] Moore R M, Oram D E, Penkett S A. Production of isoprene by marine-phytoplankton cultures[J]. Geophysical Research Letters, 1994,21(23):2507-2510. [20] Shaw S L, Chisholm S W, Prinn R G. Isoprene production by prochlorococcus, a marine cyanobacterium, and other phytoplankton[J]. Marine Chemistry, 2003,80(4):227-245. [21] Fall R, Copley S D. Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon[J]. Environmental Microbiology, 2000,2(2):123-130. [22] Kuzma J, Nemecekmarshall M, Pollock W H, et al. Bacteria produce the volatile hydrocarbon isoprene[J]. Current Microbiology, 1995,30(2):97-103. [23] Bäck J, Aaltonen H, Hellén H, et al. Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine[J]. Atmospheric Environment, 2010,44(30):3651-3659. [24] Kiene R P, Linn L J, Bruton J A. New and important roles for DMSP in marine microbial communities[J]. Journal of Sea Research, 2000, 43(3/4):209-224. [25] Howard E C, Sun S L, Biers E J, et al. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters[J]. Environmental Microbiology, 2008,10(9):2397-2410. [26] Vila-Costa m, Simó R, Harada H, et al. Dimethylsulfoniopropionate uptake by marine phytoplankton[J]. Science, 2006,314(5799):652-654. [27] Süss J, Herrmann K, Seidel M, et al. Two distinct photobacterium populations thrive in ancient mediterranean sapropels[J]. Microbial Ecology, 2008,55(3):371-383. [28] Gralnick J A, Vali H, Lies D P, et al. Extracellular respiration of dimethyl sulfoxide by shewanella oneidensis strain MR-1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(12):4669-4674. [29] Tokarczyk R, Moore R M. Production of volatile organohalogens by phytoplankton cultures[J]. Geophysical Research Letters, 1994,21(4):285-288. [30] Ballschmiter K. Pattern and sources of naturally produced organohalogens in the marine environment:Biogenic formation of organohalogens[J]. Chemosphere, 2003,52(2):313-324. [31] Davie-Martin C L, Giovannoni S J, Behrenfeld M J, et al. Seasonal and spatial variability in the biogenic production and consumption of volatile organic compounds (VOCs) by marine plankton in the North Atlantic Ocean[J]. Frontiers in Marine Science, 2020,7(611870):1-15. [32] Kieber R J, Zhou X L, Mopper K. Formation of carbonyl-compounds from UV-induced photodegradation of humic substances in natural-waters-fate of riverine carbon in the sea[J]. Limnology and Oceanography, 1990,35(7):1503-1515. [33] Mopper K, Zhou X L, Kieber R J, et al. Photochemical degradation of dissolved organic-carbon and its impact on the oceanic carbon-cycle[J]. Nature, 1991,353(6339):60-62. [34] De Bruyn W J, Clark C D, Pagel L, et al. Photochemical production of formaldehyde, acetaldehyde and acetone from chromophoric dissolved organic matter in coastal waters[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2011,226(1):16-22. [35] Pszenny A A P, Prinn R G, Kleiman G, et al. Nonmethane hydrocarbons in surface waters, their sea-air fluxes and impact on OH in the marine boundary layer during the first aerosol characterization experiment (ACE 1)[J]. Journal of Geophysical Research-Atmospheres, 1999,104(D17):21785-21801. [36] Hudson E D, Ariya P A. Measurements of non-methane hydrocarbons, DOC in surface ocean waters and aerosols over the nordic seas during polarstern cruise ARK-XX/1(2004)[J]. Chemosphere, 2007,69(9):1474-1484. [37] Riemer D D, Milne P J, Zika R G, et al. Photoproduction of nonmethane hydrocarbons (NMHCs) in seawater[J]. Marine Chemistry, 2000,71(3/4):177-198. [38] Fu H B, Ciuraru R, Dupart Y, et al. Photosensitized production of atmospherically reactive organic compounds at the air/aqueous interface[J]. Journal of the American Chemical Society, 2015,137(26):8348-8351. [39] Ciuraru R, Fine L, Van Pinxteren M, et al. Unravelling new processes at interfaces:Photochemical isoprene production at the sea surface[J]. Environmental Science& Technology, 2015,49(22):13199-13205. [40] Zhu Y T, Kieber D J. Concentrations and photochemistry of acetaldehyde, glyoxal, and methylglyoxal in the Northwest Atlantic Ocean[J]. Environmental Science& Technology, 2019,53(16):9512-9521. [41] Bell N, Hsu L, Jacob D J, et al. Methyl iodide:Atmospheric budget and use as a tracer of marine convection in global models[J]. Journal of Geophysical Research-Atmospheres, 2002,107(D17). [42] Moore R M. A photochemical source of methyl chloride in saline waters[J]. Environmental Science& Technology, 2008,42(6):1933-1937. [43] Cunliffe M, Engel A, Frka S, et al. Sea surface microlayers:A unified physicochemical and biological perspective of the air-ocean interface[J]. Progress in Oceanography, 2013,109:104-116. [44] Carlson D J. Dissolved organic materials in surface microlayers-temporal and spatial variability and relation to sea state[J]. Limnology and Oceanography, 1983,28(3):415-431. [45] Carlson D J, Mayer L M. Enrichment of dissolved phenolic material in the surface microlayer of coastal waters[J]. Nature, 1980,286(5772):482-483. [46] Wang N J, Edtbauer A, Stönner C, et al. Measurements of carbonyl compounds around the arabian peninsula:Overview and model comparison[J]. Atmospheric Chemistry and Physics, 2020,20(18):10807-10829. [47] Wisthaler A, Hansel A, Dickerson R R, et al. Organic trace gas measurements by PTR-MS during indoex 1999[J]. Journal of Geophysical Research-Atmospheres, 2002,107(D19):1-11. [48] Zhou X L, Mopper K. Carbonyl-compounds in the lower marine troposphere over the caribbean sea and bahamas[J]. Journal of Geophysical Research-Oceans, 1993,98(C2):2385-2392. [49] Anderson D C, Nicely J M, Wolfe G M, et al. Formaldehyde in the tropical western Pacific:Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models[J]. Journal of Geophysical Research-Atmospheres, 2017,122(20):11201-11226. [50] Heikes B, Snow J, Egli P, et al. Formaldehyde over the central Pacific during PEM-Tropics b[J]. Journal of Geophysical Research-Atmospheres, 2001,106(D23):32717-32731. [51] Wang S Y, Apel E C, Schwantes R H, et al. Global atmospheric budget of acetone:Air-sea exchange and the contribution to hydroxyl radicals[J]. Journal of Geophysical Research-Atmospheres, 2020,125(15). [52] Tripathi N, Sahu L K, Singh A, et al. Elevated levels of biogenic nonmethane hydrocarbons in the marine boundary layer of the arabian sea during the intermonsoon[J]. Journal of Geophysical Research-Atmospheres, 2020,125(22). [53] Sahu L K, Lal S, Venkataramani S. Seasonality in the latitudinal distributions of NMHCs over Bay of Bengal[J]. Atmospheric Environment, 2011,45(14):2356-2366. [54] Tran S, Bonsang B, Gros V, et al. A survey of carbon monoxide and non-methane hydrocarbons in the Arctic ocean during summer 2010[J]. Biogeosciences, 2013,10(3):1909-1935. [55] Edtbauer A, Stönner C, Pfannerstill E, et al. A new marine biogenic emission:Methane sulfonamide (msam), dimethyl sulfide (DMS), and dimethyl sulfone (DMSO2) measured in air over the arabian sea[J]. Atmospheric Chemistry and Physics, 2020,20(10):6081-6094. [56] Hulswar S, Simó R, Galí M, et al. Third revision of the global surface seawater dimethyl sulfide climatology (DMS-Rev3)[J]. Earth System Science Data, 2022,14(7):2963-2987. [57] Tripathi N, Sahu L K, Singh A, et al. High levels of isoprene in the marine boundary layer of the arabian sea during spring inter-monsoon:Role of phytoplankton blooms[J]. ACS Earth and Space Chemistry, 2020,4(4):583-590. [58] Kameyama S, Yoshida S, Tanimoto H, et al. High-resolution observations of dissolved isoprene in surface seawater in the Southern Ocean during austral summer 2010~2011[J]. Journal of Oceanography, 2014,70(3):225-239. [59] Li J L, Zhai X, Zhang H H, et al. Temporal variations in the distribution and sea-to-air flux of marine isoprene in the east China sea[J]. Atmospheric Environment, 2018,187:131-143. [60] Lein A Y, Savvichev A S, Ivanov M V. Reservoir of dissolved methane in the water column of the seas of the Russian Arctic region[J]. Doklady Earth Sciences, 2011,441(1):1576-1578. [61] Shakhova N, Semiletov I, Salyuk A, et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf[J]. 2010,327(5970):1246-1250. [62] Yokouchi Y, Mukai H, Yamamoto H, et al. Distribution of methyl iodide, ethyl iodide, bromoform, and dibromomethane over the ocean (east and southeast Asian seas and the western Pacific)[J]. Journal of Geophysical Research-Atmospheres, 1997,102(D7):8805-8809. [63] Moore R M, Groszko W, Niven S J. Ocean-atmosphere exchange of methyl chloride:Results from NW Atlantic and Pacific ocean studies[J]. Journal of Geophysical Research-Oceans, 1996,101(C12):28529-28538. [64] Qi Q Q, Yang G P, Yang B, et al. Spatiotemporal distributions and oceanic emissions of short-lived halocarbons in the east China sea[J]. Science of the Total Environment, 2023,893. [65] Andreae M O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle[J]. Marine Chemistry, 1990,30(1-3):1-29. [66] Kettle A J, Andreae M O. Flux of dimethylsulfide from the oceans:A comparison of updated data seas and flux models[J]. Journal of Geophysical Research-Atmospheres, 2000,105(D22):26793-26808. [67] Moller D. On the global natural sulfur emission[J]. Atmospheric Environment, 1984,18(1):29-39. [68] Damm E, Helmke E, Thoms S, et al. Methane production in aerobic oligotrophic surface water in the central Arctic ocean[J]. Biogeosciences, 2010,7(3):1099-1108. [69] Damm E, Kiene R P, Schwarz J, et al. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP[J]. Marine Chemistry, 2008,109(1/2):45-59. [70] Palmer P I, Shaw S L. Quantifying global marine isoprene fluxes using MODIS chlorophyll observations[J]. Geophysical Research Letters, 2005,32(9). [71] Booge D, Marandino C A, Schlundt C, et al. Can simple models predict large-scale surface ocean isoprene concentrations?[J]. Atmospheric Chemistry and Physics, 2016,16(18):11807-11821. [72] Fischer E V, Jacob D J, Millet D B, et al. The role of the ocean in the global atmospheric budget of acetone[J]. Geophysical Research Letters, 2012,39. [73] Yang M, Beale R, Liss P, et al. Air-sea fluxes of oxygenated volatile organic compounds across the Atlantic ocean[J]. Atmospheric Chemistry and Physics, 2014,14(14):7499-7517. [74] Jacob D J, Field B D, Jin E M, et al. Atmospheric budget of acetone[J]. Journal of Geophysical Research-Atmospheres, 2002,107(D10). [75] Millet D B, Guenther A, Siegel D A, et al. Global atmospheric budget of acetaldehyde:3-D model analysis and constraints from in-situ and satellite observations[J]. Atmospheric Chemistry and Physics, 2010, 10(7):3405-3425. [76] Wang S Y, Hornbrook R S, HILLS A, et al. Atmospheric acetaldehyde:Importance of air-sea exchange and a missing source in the remote troposphere[J]. Geophysical Research Letters, 2019,46(10):5601-5613. [77] Ziska F, Quack B, Abrahamsson K, et al. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide[J]. Atmospheric Chemistry and Physics, 2013,13(17):8915-8934. [78] Cui L, Xiao Y, Hu W, et al. Enhanced dataset of global marine isoprene emissions from biogenic and photochemical processes for the period 2001~2020[J]. Earth System Science Data, 2023,15(12):5403-5425. [79] Chen X, Zhang X, Lei H. Optical absorption properties of CDOM and tracing implication of DOC in the Changjiang Estuary[J]. Marine Environmental Science, 2012,31(5):625-630. [80] Thurman E M, Malcolm R L. Preparative isolation of aquatic humic substances[J]. Environmental Science& Technology, 1981,15(4):463-466. [81] Osburn C L, Morris D P, Webb A R, et al. Photochemistry of chromophoric dissolved organic matter in natural waters[M]. The Royal Society of Chemistry:2003:187-204. [82] 邰超,李雁宾,阴永光,等.天然水体中可溶性有机质的自由基光化学行为[J].化学进展, 2012,24(7):1388-1397. Tai C, Li Y B, Yin Y G, et al. Free radical photochemistry of dissolved organic matter in natural water[J]. Progress in Chemistry, 2012,24(7):1388-1397. [83] Zepp R G, Schlotzhauer P F, Sink R M. Photosensitized transformations involving electronic-energy transfer in natural-waters-role of humic substances[J]. Environmental Science& Technology, 1985,19(1):74-81. [84] 郭卫东,程远月,余翔翔,等.海洋有色溶解有机物的光化学研究进展[J].海洋通报, 2008,(3):107-114. Guo W D, Cheng Y Y, Yu X X, et al. An overview of the photochemistry of marine chromophoric dissolved organic matter[J]. Marine Science Bulletin, 2008,(3):107-114. [85] Keller M D, Korjeff-Bellows W. Physiological aspects of the production of dimeyhtlsulfoniopropionate (DMSP) by marine phytoplankton[M]. Boston, MA:Springer US:1996:131-142. [86] Mopper K, Kieber D J, Stubbins A. Marine photochemistry of organic matter:Processes and impacts[M]. 2015:389-450. [87] Moore R M, Zafiriou O C. Photochemical production of methyl-iodide in seawater[J]. Journal of Geophysical Research-Atmospheres, 1994,99(D8):16415-16420. [88] Happell J D, Wallace D W R. Methyl iodide in the Greenland/Norwegian seas and the tropical Atlantic ocean:Evidence for photochemical production[J]. Geophysical Research Letters, 1996, 23(16):2105-2108. [89] Moran M A, Zepp R G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter[J]. Limnology and Oceanography, 1997,42(6):1307-1316. [90] Valentine R L, Zepp R G. Formation of carbon-monoxide from the photodegradation of terrestrial dissolved organic-carbon in natural-waters[J]. Environmental Science& Technology, 1993,27(2):409-412. [91] Guo W D, Yang L Y, Yu X X, et al. Photo-production of dissolved inorganic carbon from dissolved organic matter in contrasting coastal waters in the southwestern Taiwan Strait, China[J]. Journal of Environmental Sciences, 2012,24(7):1181-1188. [92] Bange H W, Uher G. Photochemical production of methane in natural waters:Implications for its present and past oceanic source[J]. Chemosphere, 2005,58(2):177-183. [93] Zhou X L, Mopper K. Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange[J]. Marine Chemistry, 1997,56(3/4):201-213. [94] Mopper K, Stahovec W L. Sources and sinks of low-molecular-weight organic carbonyl-compounds in seawater[J]. Marine Chemistry, 1986,19(4):305-321. [95] 范晓明,李先国,唐旭利,等.水体中DOM的光解影响因素研究[J].海洋学报, 2012,34(5):191-196. Fan X M, Li X G, Tang X L, et al. Study on photochemical degration of dissolved organic matter in aqueous solution[J]. Acta Oceanologica Sinica, 2012,34(5):191-196. [96] 毕雪薇.海水中挥发性卤代烃的光化学生成[D].大连:大连海事大学, 2017. BI X W. Photochemical generation of volatile halogenated hydrocarbons in seawater[D]. Dalian:Dalian Maritime University, 2017. [97] Chen Y, Liu S S, Yang G P, et al. Influence factors on photochemical production of methyl iodide in seawater[J]. Journal of Ocean University of China, 2020,19(6):1353-1361. [98] 李梦婷.珠江口溶解有机物的光化学和微生物降解[D].天津:天津大学, 2022. LI M T. Photo-and bio-degradation of dissolved organic matter in the Pearl River (Zhujiang) estuary[D]. Tianjin:Tianjin University, 2022. [99] Zhu Y T, Kieber D J. Wavelength-and temperature-dependent apparent quantum yields for photochemical production of carbonyl compounds in the North Pacific Ocean[J]. Environmental Science& Technology, 2018,52(4):1929-1939. [100] 孙欣,宋贵生, HUIXIANG X.长江口溶解有机物光漂白和光矿化表观量子产率[J].海洋学报, 2016,38(4):120-129. Sun X, Song G S, Xie H X. The apparent quantum yields of dissolved organic matter photobleaching and photomineralization in the Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2016,38(4):120-129. [101] Osburn C L, Zagarese H E, Morris D P, et al. Calculation of spectral weighting functions for the solar photobleaching of chromophoric dissolved organic matter in temperate lakes[J]. Limnology and Oceanography, 2001,46(6):1455-1467. [102] Porcal P, Dillon P J, Molot L A. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon[J]. Plos One, 2015,10(6):1-15. [103] Feely R A, Sabine C L, Lee K, et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J]. Science, 2004,305(5682):362-366. [104] Yang Q, Guo Y, E Y, et al. Methyl chloride produced during UV254 irradiation of saline water[J]. Journal of Hazardous Materials, 2020, 384:1-34. [105] Dallin E, Wan P, Krogh E, et al. New pH-dependent photosubstitution pathways of syringic acid in aqueous solution:Relevance in environmental photochemistry[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2009,207(2/3):297-305. [106] Stirchak L T, Abis L, Kalalian C, et al. Differences in photosensitized release of VOCs from illuminated seawater versus freshwater surfaces[J]. Acs Earth and Space Chemistry, 2021,5(9):2233-2242. [107] Wan D, Sharma V K, Liu L, et al. Mechanistic insight into the effect of metal ions on photogeneration of reactive species from dissolved organic matter[J]. Environmental Science& Technology, 2019,53(10):5778-5786. [108] Lang K, Wagnerova D M, Klementova S, et al. Humic substances-excited states, quenching by metal ions, and photosensitized degradation of chlorophenols[J]. Collection of Czechoslovak Chemical Communications, 1997,62(8):1159-1168. [109] Linschitz H, Pekkarinen L. The quenching of triplet states of anthracene and porphyrins by heavy metal ions[J]. Journal of the American Chemical Society, 1960,82(10):2411-2416. [110] Pan Y H, Garg S, Waite T D, et al. Copper inhibition of triplet-induced reactions involving natural organic matter[J]. Environmental Science& Technology, 2018,52(5):2742-2750. [111] Huang D, Wang J Z, Xia H L, et al. Enhanced photochemical volatile organic compounds release from fatty acids by surface-enriched Fe (III)[J]. Environmental Science& Technology, 2020,54(21):13448-13457. [112] Gu Y F, Lensu A, Perämäki S, et al. Iron and pH regulating the photochemical mineralization of dissolved organic carbon[J]. Acs Omega, 2017,2(5):1905-1914. [113] Poulin B A, Ryan J N, Aiken G R. Effects of iron on optical properties of dissolved organic matter[J]. Environmental Science& Technology, 2014,48(17):10098-10106. [114] Abbt-Braun G, Lankes U, Frimmel F H. Structural characterization of aquatic humic substances-the need for a multiple method approach[J]. Aquatic Sciences, 2004,66(2):151-170. [115] Malcolm R L. The uniqueness of humic substances in each of soil, stream and marine environments[J]. Analytica Chimica Acta, 1990, 232(1):19-30. [116] Harvey G R, Boran D A, Chesal L A, et al. The structure of marine fulvic and humic acids[J]. Marine Chemistry, 1983,12(2/3):119-132. [117] Coble P G. Marine optical biogeochemistry:The chemistry of ocean color[J]. Chemical Reviews, 2007,107(2):402-418. [118] Helms J R, Stubbins A, Ritchie J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008,53(3):955-969. [119] Fichot C G, Benner R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins[J]. Limnology and Oceanography, 2012,57(5):1453-1466. [120] Richard C, Trubetskaya O, Trubetskoj O, et al. Key role of the low molecular size fraction of soil humic acids for fluorescence and photoinductive activity[J]. Environmental Science& Technology, 2004,38(7):2052-2057. [121] Boyle E S, Guerriero N, Thiallet A, et al. Optical properties of humic substances and CDOM:Relation to structure[J]. Environmental Science& Technology, 2009,43(7):2262-2268. [122] Zhang T, Ma H, Hong Z C, et al. Photo-reactivity and photo-transformation of algal dissolved organic matter unraveled by optical spectroscopy and high-resolution mass spectrometry analysis[J]. Environmental Science& Technology, 2022,56(18):13439-13448. [123] Maizel A C, Remucal C K. Molecular composition and photochemical reactivity of size-fractionated dissolved organic matter[J]. Environmental Science& Technology, 2017,51(4):2113-2123. [124] Li Z Y, Xue L K, Yang X, et al. Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China[J]. Science of the Total Environment, 2018,612:1114-1122. [125] Elshorbany Y F, Kurtenbach R, Wiesen P, et al. Oxidation capacity of the city air of santiago, chile[J]. Atmospheric Chemistry and Physics, 2009,9(6):2257-2273. [126] Prinn R G. The cleansing capacity of the atmosphere[J]. Annual Review of Environment and Resources, 2003,28:29-57. [127] Thompson A M. The oxidizing capacity of the earths atmosphere-probable past and future changes[J]. Science, 1992,256(5060):1157-1165. [128] 王跃思,刘子锐,胡波,等.大气氧化能力量化研究[J].大气科学, 2024,48(1):34-50. Wang Y S, Liu Z R, Hu B, et al. Quantitative study of atmospheric oxidation capacity[J]. Chinese Journal of Atmospheric Sciences, 2024,48(1):34-50. [129] 蒋莹.典型高山和海洋大气亚硝酸的来源及对大气氧化性的影响[D].济南:山东大学, 2022. JIANG Y. Sources of anitrous acid in typical mountain and marine atmosphere and its impacts on atmospheric oxidation capacity[D]. Jinan:Shandong University, 2022. [130] Yang X, Xue L K, Wang T, et al. Observations and explicit modeling of summertime carbonyl formation in beijing:Identification of key precursor species and their impact on atmospheric oxidation chemistry[J]. Journal of Geophysical Research-Atmospheres, 2018,123(2):1426-1440. [131] Qu H, Wang Y H, Zhang R X, et al. Chemical production of oxygenated volatile organic compounds strongly enhances boundary-layer oxidation chemistry and ozone production[J]. Environmental Science& Technology, 2021,55(20):13718-13727. [132] Shen H Q, Liu Y H, Zhao M, et al. Significance of carbonyl compounds to photochemical ozone formation in a coastal city (shantou) in eastern China[J]. Science of the Total Environment, 2021, 764:1-10. [133] Wang W J, Yuan B, Peng Y W, et al. Direct observations indicate photodearadable oxygenated volatile organic compounds (OVOCs) as larger contributors to radicals and ozone production in the atmosphere[J]. Atmospheric Chemistry and Physics, 2022,22(6):4117-4128. [134] Zhang Y N, Xue L K, Mu J S, et al. Developing the maximum incremental reactivity for volatile organic compounds in major cities of central-eastern China[J]. Journal of Geophysical Research-Atmospheres, 2022,127(22):1-16. [135] Travis K R, Heald C L, Allen H M, et al. Constraining remote oxidation capacity with atom observations[J]. Atmospheric Chemistry and Physics, 2020,20(13):7753-7781. [136] Atkinson R. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment, 2000,34(12-14):2063-2101. [137] Ziemann P J, Atkinson R. Kinetics, products, and mechanisms of secondary organic aerosol formation[J]. Chemical Society Reviews, 2012,41(19):6582-6605. [138] Odum J R, Hoffmann T, Bowman F, et al. Gas/particle partitioning and secondary organic aerosol yields[J]. Environmental Science& Technology, 1996,30(8):2580-2585. [139] Tröstl J, Chuang W K, Gordon H, et al. The role of low-volatility organic compounds in initial particle growth in the atmosphere[J]. Nature, 2016,533(7604):527-531. [140] Alpert P A, Ciuraru R, Rossignol S, et al. Fatty acid surfactant photochemistry results in new particle formation[J]. Scientific Reports, 2017,7:1-11. [141] Tsigaridis K, Daskalakis N, Kanakidou M, et al. The aerocom evaluation and intercomparison of organic aerosol in global models[J]. Atmospheric Chemistry and Physics, 2014,14(19):10845-10895. [142] Kim M J, Novak G A, Zoerb M C, et al. Air-sea exchange of biogenic volatile organic compounds and the impact on aerosol particle size distributions[J]. Geophysical Research Letters, 2017,44(8):3887-3896. [143] Carpenter L J, Nightingale P D. Chemistry and release of gases from the surface ocean[J]. Chemical Reviews, 2015,115(10):4015-4034. [144] Bernard F, Ciuraru R, Boréave A, et al. Photosensitized formation of secondary organic aerosols above the air/water interface[J]. Environmental Science& Technology, 2016,50(16):8678-8686. [145] Rossignol S, Tinel L, Bianco A, et al. Atmospheric photochemistry at a fatty acid-coated air-water interface[J]. Science, 2016,353(6300):699-702. [146] Solomon S, Qin D, Manning M, et al. Ar4climate change 2007:The physical science basis[M]. 2007:1-996. [147] Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol[J]. Nature, 2014,506(7489):476-479. [148] Anttila T, Langmann B, Varghese S, et al. Contribution of isoprene oxidation products to marine aerosol over the north-east Atlantic[J]. Advances in Meteorology, 2010,2010:1-10. [149] Quinn P K, Coffman D J, Johnson J E, et al. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol[J]. Nature Geoscience, 2017,10(9):674-679. [150] Quinn P K, Bates T S. The case against climate regulation via oceanic phytoplankton sulphur emissions[J]. Nature, 2011,480(7375):51-56. [151] 李楠.中国主要温室气体变化及其对全球辐射强迫的贡献研究[D].郑州:河南大学, 2021. LI N. Changes of major greenhouse gases in China and their contributions to global radiative forcing[D]. Zhengzhou:Henan University, 2021. [152] Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate[J]. Nature, 1987,326(6114):655-661.