A “turn-on” fluorescent probe for Al3+ and its biological detection in vivo
YU Yan-chao, FENG Jun-kai, LIU Bo, YOU Jun, WU Wen-ju, JING Jun-kai
Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemicaland Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
Abstract:A novel bisalicylaldehyde schiff base was designed and synthesized, and its structure was confirmed by NMR and MS. It was found to be highly selective for Al3+ in methanol as a "turn-on" fluorescent probe in fluorescence spectroscopy, and fluorescence intensity enhanced 110-fold after the probe recognized Al3+. Fluorescence titration experiments showed that the probe have an excellent linear relationship with Al3+ concentration range 25~55μmol/L, and the detection limit was calculated to be as low as 5.4×10-9mol/L, which was far below the drinking water restriction of Al3+ by WHO (7.4×10-6 mol/L). HRMS analysis showed the binding stoichiometry between probe and Al3+ was to be 2:1. Moreover, the probe was applied for biological detection in vivo of Al3+ ions, which presented excellent biocompatibility, and could be applied to the detection of Al3+ in water body and organisms.
王珊,张克峰,李兴国,等.新型硫酸铝-壳聚糖助滤剂强化砂滤效能研究[J]. 中国环境科学, 2019,39(9):3780-3788. Wang S, Zhang K F, Li X G, et al. Enhancement sand filtration by an innovative filter aid:aluminum sulfate-chitosan (AS-CTS)[J]. China Environmental Science, 2019,39(9):3780-3788.
[2]
李庆峰,邱竹贤.铝电池的开发与应用进展[J]. 东北大学学报(自然科学版), 2001,22(2):130-132. Li Q F, Qiu Z X. Advances in development and application of aluminium batteries[J]. Journal of Northeastern Unibersity(Natural Science), 2001,22(2):130-132.
[3]
程敏.新型铝制瓶形罐在饮料包装中的应用[J]. 中国包装工业, 2004,10:54. Cheng M. Application of new aluminum bottles in the beverage package[J]. China Packaging Industry, 2004,10:54.
[4]
李毅.金属铝涂层的研究与应用[J]. 世界有色金属, 2018,10:178-179. Li Y. Research and application of flake resin coating[J]. World Nonferrous Metals, 2018,10:178-179.
[5]
靳孟洁,张轶舜,赵金帅,等.郑州市氧化铝工业窑炉污染物及源谱特征[J]. 中国环境科学, 2020,43(3):1023-1029. Jin M L, Zhang Y S, Zhao J S, et al. Characterization of particulate matter Source profiles and pollutant from alumina industrial furnace in Zhengzhou City[J]. China Environmental Science, 2020,43(3):1023-1029.
[6]
Alstad N E W, Kjelsberg B M, Vøllestad L A, et al. The significance of water ionic strength on aluminium toxicity in brown trout (Salmo trutta L.)[J]. Environmental Pollution, 2005,133:333-342.
[7]
Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants[J]. Plant Physiology, 1995,107(2):315-321.
[8]
Liu Y, Bi A Y, Gao T, et al. A novel self-assembled nanoprobe for the detection of aluminum ions in real samples and living cells[J]. Talanta, 2019,194(1):38-45.
[9]
Nayak P. Aluminum:impacts and disease[J]. Environmental Research Section A, 2002,89:101-115.
[10]
翁建华,黄连芬,刘晓茹,等.土壤酸化及天然土壤溶液中铝的形态[J]. 中国环境科学, 2000,20(6):501-505. Weng J H, Huang L F, Liu X R, et al. Acidification of soils and aluminum species in natural soil solution[J]. China Environmental Science, 2000,20(6):501-505.
[11]
Kar C, Samanta S, Goswami S, et al. A single probe to sense Al(Ⅲ) colorimetrically and Cd(Ⅱ) by turn-on fluorescence in physiological conditions and live cells, corroborated by X-ray crystallographic and theoretical studies[J]. Dalton Transactions, 2015,44:4123-4132.
[12]
Darbre P D. Aluminium, antiperspirants and breast cancer[J]. Journal of Inorganic Biochemistry, 2005,99:1912-1919.
[13]
王雪娜,冉丛聪,李青莲,等. EDTA络合提取-GFAAS法测定藿香正气丸中的铝离子残留[J]. 中国中药杂志, 2015,40(12):2345-2348. Wang X N, Ran C C, Li Q L, et al. Determination of residual aluminium ion in huoxiang zhengqi pellets by GFAAS with EDTA complexation extraction[J]. China Journal of Chinese Materia Medica, 2015,40(12):2345-2348.
[14]
单红宾,刘学英,徐玉文. ICP-MS法测定米力农注射液中铝离子的含量[J]. 药学研究, 2013,32(2):83-84. Shan H B, Liu X Y, Xu Y W, et al. Determination of aluminum in Milrinone Injection by ICP-MS[J]. Journal of Pharmaceutical Research, 2013,32(2):83-84.
[15]
赵玉霞.铍试剂Ⅲ分光光度法测定水中铝[J]. 中华预防医学杂志, 2002,36(2):118-120. Zhao Y X. Determination of Aluminium in water by beryllium reagent Ⅲ-spectrophotometer[J]. China Journal of Preventive Medicine, 2002,36(2):118-120.
[16]
张蕾,姬亚芹,李越洋,等.钢铁冶炼尘两种采样方法PM2.5中元素的比较研究[J]. 中国环境科学, 2018,38(12):4426-4431. Zhang L, Ji Y Q, Li Y Y, et al. A comparative study on the elements of PM2.5in two sampling methods of steel dust[J]. China Environmental Science, 2018,38(12):4426-4431.
[17]
张玉芬,于秀英,齐景凯.微波消解-等离子体原子发射光谱法测定8种粮食中7种金属元素含量[J]. 食品科学, 2012,33(24):280-282. Zhang Y F, Yu X Y, Qi J K. Determination of seven metal elements in eight cereal grains by microwave digestion coupled with ICP-AES[J]. Food Science, 2012,33(24):280-282.
[18]
徐鉴,扶庆权,张辉,等. 8-羟基喹啉类荧光探针的合成及其对食品中Al3+含量的检测[J]. 食品科学, 2017,38(18):292-296. Xu J, Fu Q Q, Zhang H, et al. Synthesis and application of a novel fluorescent probe based on 8-hydroxyquinoline for Al3+ detection in food[J]. Food Science, 2017,38(18):292-296.
[19]
解雪乔,蔡云凤,韩娟,等.一种亲水性温敏聚合物荧光探针的制备及用于农产品中铝离子的检测[J]. 分析化学, 2018, 46(4):502-510. Xie X Q, Cai Y F, Han J, et al. Synthesis of a new type of responsive hydrophilic block copolymer fluorescence probe and its application in detection of aluminum ion in agricultural products[J]. Chinese Journal of Analytical Chemistry, 2018,46(4):502-510.
[20]
Liu P, Li W Y, Guo S, et al. Application of a novel "Turn-on" fluorescent material to the detection of aluminium ion in blood serum[J]. ACS Applied Materials & Interface, 2018,10(28):23667-23673.
[21]
Xiao H D, Chen K, Jiang N N, et al. A highly selective turn-on fluorescent probe for Al(Ⅲ) based on coumarin and its application in vivo[J]. Analyst, 2014,139:1980-1986.
[22]
刘春霞,马兴,魏国华,等.一种新型"Turn-on"荧光探针用于硫化氢可视化检测[J]. 环境科学, 2015,36(1):343-348. Liu C X, Ma X, Wei G H, et al. A new "Turn-on" fluorescent probe for visual detection of hydrogen sulfide[J]. Environmental Science, 2015,36(1):343-348.
[23]
Wen X Y, Fan Z F. Linear Schiff-base fluorescence probe with aggregation-induced emission characteristics for Al3+ detection and its application in live cell imaging[J]. Analytica Chimica Acta, 2016, 945(16):75-84.
[24]
钟克利,王禹童,于奇轩,等.基于4-(N,N-二乙氨基)水杨醛席夫碱类荧光探针的研究进展[J]. 化学通报, 2018,81(1):37-44. Zhong K L, Wang Y T, Yu Q X, et al. Progress in fluorescence probes based on 4-(N,N-Diethylamino) salicylaldehyde schiff base[J]. Chemistry, 2018,81(1):37-44.
[25]
Tian H, Qiao X, Zhang Z L, et al. A high performance 2-hydroxynaphthalene Schiff base fluorescent chemosensor for Al3+ and its applications in imaging of living cells and zebrafish in vivo[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019,207:31-38.
[26]
陈金业,展树中.席夫碱及其金属配合物的研究进展[J]. 广东化工, 2014,24(41):60. Chen J Y, Zhan S Z. The development of schiff base and its metal complexes research[J]. Guangdong Chemical Industry, 2014,24(41):60.
[27]
Wang Y, Wu H, Wu W N, et al. An AIRE active Schiff base bearing coumarin and pyrrole unit:Cu2+ detection in either solution or aggregation states[J]. Sensors and Actuators B, 2018,260:106-115.
[28]
Kumar M, Kumar A, Singh M K, et al. A novel benzidine based Schiff base "turn-on" fluorescent chemosensor for selective recognition of Zn2+[J]. Sensors and Actuators B:Chemical, 2017,241:1218-1223.
[29]
Singhal D, Gupta N, Singh A K. Fluorescent chemosensor for Al3+ ion in partially aqueous media using julolidine based probe[J]. New Journal of Chemistry, 2016,40:7536-7541.
[30]
Shen K S, Mao S S, Shin X K, et al. Characterization of a highly Al3+-selective fluorescence probe based on naphthalimide-Schiff base and its application to practical water samples[J]. Luminescence, 2018,33:54-63.