Application of life cycle assessment in maize planting and deep processing products
DING Jia-ying, DONG Li-ming, LIU Yan-feng, SUN Dong-xia
State Environmental Protection Key Laboratory of Food Chain Pollution Control, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, School of Ecological Environment, Beijing Technology and Business University, Beijing 100048, China
摘要 对LCA在玉米种植环境影响研究中的目标与范围定义、清单分析、环境影响指标与计算方法、结果解释等方面的研究进行了梳理分析,其中大部分文献均对碳足迹进行了计算,CML(Institute of Environmental Sciences of the University of Leiden)、ReCiPe(许多LCA领域研究人员共同开发)和IPCC(Intergovernmental Panel on Climate Change)方法是应用最多的3种方法,经分析计算得到国外玉米种植单位产量碳足迹均值为0.50kg CO2-eq/kg,我国的均值为0.58kg CO2-eq/kg.同时本文也对LCA在玉米深加工产品中的研究进展进行了分析整理,对今后LCA应用于玉米种植及深加工产品中的发展方向进行了展望.
Abstract:This paper focused on the research of Life Cycle Assessment (LCA) in the environmental impact of maize planting, including the definition of goal and scope, inventory analysis, environmental impact indicators and calculation methods, results interpretation and so on. Carbon footprint was calculated in most literatures. CML(Institute of Environmental Sciences of the University of Leiden), ReCiPe (developed by many LCA researchers) and IPCC (Intergovernmental Panel on Climate Change) are the three most widely used methods. Through analysis and calculation, the average carbon footprint per unit yield of corn planting in foreign countries is 1.78kg CO2-eq/kg, while that in China is 1.31kg CO2-eq/kg. Meanwhile, this research also reviewed the research of LCA in deep processing products from maize, and prospects the development direction of LCA in maize planting and deep processing products in the future.
丁佳莹, 董黎明, 刘岩峰, 孙东霞. 生命周期评价在玉米种植及深加工产品中的应用[J]. 中国环境科学, 2021, 41(11): 5405-5415.
DING Jia-ying, DONG Li-ming, LIU Yan-feng, SUN Dong-xia. Application of life cycle assessment in maize planting and deep processing products. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(11): 5405-5415.
李少昆,赵久然,董树亭,等.中国玉米栽培研究进展与展望[J]. 中国农业科学, 2017,50(11):1941-1959.Li S K, Zhao J R, Dong S T, et al. Advances and prospects of maize cultivation in China[J]. Scientia Agricultura Sinica, 2017,50(11):1941-1959.
[2]
Linquist B, Groenigen K J V, Adviento-Borbe M A, et al. An agronomic assessment of greenhouse gas emissions from major cereal crops[J]. Global change biology, 2012,18(1):194-209.
[3]
Lee E K, Zhang X, Adler P A, et al. Spatially and temporally explicit life cycle global warming, eutrophication, and acidification impacts from corn production in the U.S. Midwest[J]. Journal of cleaner production, 2020,242(1),DOI:10.1016/j.jclepro.2019.118465.
[4]
Li G H, Cheng Q, Li L, et al. N, P and K use efficiency and maize yield responses to fertilization modes and densities[J]. Journal of Integrative Agriculture, 2021,20(1):78-86.
[5]
Chen X P, Cui Z L, Fan M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014,514:486-489.
[6]
ISO, 2006b ISO Environmental Management-Life Cycle Assessment-Principles and Framework International Organization for Standardization, Geneva (2006) ISO 14044[S].
[7]
Shamraiz Ahmad, Kuan Y W, Riaz Ahmad. Life cycle assessment for food production and manufacturing:recent trends, global applications and future prospects[J]. Procedia Manufacturing, 2019,34(2019):49-57.
[8]
Khatri P, Jain S. Environmental life cycle assessment of edible oils:A review of current knowledge and future research challenges[J]. Journal of cleaner production, 2017,152(5):63-76.
[9]
Weidema B, Brandao M. Book Review of Life Cycle Assessment:Theory and Practice[J]. Journal of Industrial Ecology, 2019,24(10):726-730.
[10]
Cerutti A K, Cerutti, Bruun S, et al. Environmental sustainability of traditional foods:the case of ancient apple cultivars in Northern Italy assessed by multifunctional LCA[J]. Journal of Cleaner Production, 2013,52(8):245-252.
[11]
Almeida C, Vaz S, Ziegler F. Environmental life cycle assessment of a canned sardine product from Portugal[J]. Journal of Industrial Ecology, 2015,19(4):607-617.
[12]
Vázquez-Rowe I, Villanueva-Rey P, Iribarren D, et al. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain)[J]. Journal of Cleaner Production, 2012,27(5):92-102.
[13]
Yan M J, Nicholas M H. Life cycle assessment of multi-product dairy processing using Irish butter and milk powders as an example[J]. Journal of cleaner production, 2018,198(10),DOI:10.1016/j.jclepro. 2018.07.006.
[14]
Laurent A, Weidema Bo P, Bare J, et al. Methodological review and detailed guidance for the life cycle interpretation phase[J]. Journal of Industrial Ecology, 2020,24(5):986-1003.
[15]
罗小勇,黄希望,王大伟,等.生命周期评价理论及其在污水处理领域的应用综述[J]. 环境工程, 2013,31(4):118-122.Luo X Y, Huang X W, Wang D W, et al. The theory of life cycle assessment and its application in wastewater treatment[J]. Environmental engineering, 2013,31(4):118-122.
[16]
Khatri P, Jain S. Environmental life cycle assessment of edible oils:A review of current knowledge and future research challenges[J]. Journal of Cleaner Production, 2017,152(3):63-76.
[17]
Bruno Notarnicola, Serenella Sala, Assumpcio Anton, et al. The role of life cycle assessment in supporting sustainable agri-food systems:A review of the challenges[J]. Journal of Cleaner Production, 2017, 140(1):399-409.
[18]
Jiang Z, Zheng H, Xing B, Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies[J]. Science of the Total Environment, 2021,760(3),DOI:10.1016/j.scitotenv.2020.143342.
[19]
Taki M, Soheili-Fard F, Chen G, et al. Life cycle assessment to compare the environmental impacts of different wheat production systems[J]. Journal of Cleaner Production, 2018,197(10):195-207.
[20]
Zortea R B, Maciel V G, Passuello A. Sustainability assessment of soybean production in Southern Brazil:A life cycle approach[J]. Sustainable Production and Consumption, 2018,13(1):102-112.
[21]
Wang X, Wu X, Yan P, et al. Integrated analysis on economic and environmental consequences of livestock husbandry on different scale in China[J]. Journal of Cleaner Production, 2016,119(4):1-12.
[22]
Esteves M, Maria E, Esteves P, et al. Greenhouse gas emissions related to biodiesel from traditional soybean farming compared to integrated crop-livestock systems[J]. Journal of Cleaner Production, 2018, 179(4):81-92.
[23]
Abdou K, Aubin J, Romdhane M S, et al. Environmental assessment of seabass (Dicentrarchus labrax) and seabream (Sparus aurata) farming from a life cycle perspective:a case study of a Tunisian aquaculture farm[J]. Aquaculture, 2017,471(3):204-212.
[24]
Badiola M, Basurko O, Gabi˜na G, et al. Integration of energy audits in the Life Cycle Assessment methodology to improve the environmental performance assessment of recirculating aquaculture systems[J]. Journal of Cleaner Production, 2017,157(7):155-166.
[25]
Biermann G, Geist J. Life cycle assessment of common carp (Cyprinus carpio L.)-A comparison of the environmental impacts of conventional and organic carp aquaculture in Germany[J]. Aquaculture, 2019,501(2):404-415.
[26]
Recanati F, Marveggio D, Dotelli G. From beans to bar:A life cycle assessment towards sustainable chocolate supply chain[J]. The Science of the Total Environment, 2018,613-614(2):1013-1023.
[27]
Asem-Hiablie S, Battagliese T, Stackhouse-Lawson K R, et al. A life cycle assessment of the environmental impacts of a beef system in the USA[J]. The International Journal of Life Cycle Assessment, 2019, 24(3):441-455.
[28]
Tassielli G, Notarnicola B, Renzulli P A, et al. Environmental life cycle assessment of fresh and processed sweet cherries in southern Italy[J]. Journal of Cleaner Production, 2018,171(1):184-197.
[29]
Zhu Z L, Jia Z H, Peng L, et al. Life cycle assessment of conventional and organic apple production systems in China[J]. Journal of Cleaner Production, 2018,201(11):156-168.
[30]
Wang Y, Lu Y. Evaluating the potential health and economic effects of nitrogen fertilizer application in grain production systems of China[J]. Journal of Cleaner Production, 2020,264(8),DOI:10.1016/j.jclepro. 2020.121635.
[31]
Li S, Wu J C, Wang X Q, et al. Economic and environmental sustainability of maize-wheat rotation production when substituting mineral fertilizers with manure in the North China Plain[J]. Journal of Cleaner Production, 2020,271(10),DOI:10.1016/j.jclepro.2020.122683.
[32]
Bacenetti J, Lovarelli D, Fiala M. Mechanisation of organic fertiliser spreading, choice of fertiliser and crop residue management as solutions for maize environmental impact mitigation[J]. European Journal of Agronomy, 2016,79(9):107-118.
[33]
Boone L, Meester SD, Vandecasteele B, et al. Environmental life cycle assessment of grain maize production:An analysis of factors causing variability[J]. The Science of the total environment, 2016,553(5):551-564.
[34]
Zhang W S, He X M, Zhang Z D, et al. Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China[J]. Biosystems Engineering, 2018,167(3):75-86.
[35]
Feng Y P, Zhang Y Y, Li S, et al. Sustainable options for reducing carbon inputs and improving the eco-efficiency of smallholder wheat-maize cropping systems in the Huanghuaihai Farming Region of China[J]. Journal of Cleaner Production, 2020,244(1),DOI:10.1016/j.jclepro. 2019.118887.
[36]
Fantin V, Righi S, Rondini I, et al. Environmental assessment of wheat and maize production in an Italian farmers' cooperative[J]. Journal of Cleaner Production, 2017,140(1):631-643.
[37]
Yang D, Jia X X, Dang M Y, et al. Life cycle assessment of cleaner production measures in monosodium glutamate production:A case study in China[J]. Journal of Cleaner Production, 2020,270(10),DOI:10.1016/j.jclepro.2020.122126.
[38]
Chen X H, Ma C C, Zhou H M, et al. Identifying the main crops and key factors determining the carbon footprint of crop production in China, 2001~2018[J]. Resources, Conservation & Recycling. 2021, 172(9),DOI:10.1016/j.resconrec.2021.105661
[39]
谭萌,彭艺,马戎,等.5G对中国碳排放峰值的影响研究[J]. 中国环境科学, 2021,41(3):1447-1454.Tan M, Peng Y, Ma R, et al. Influence of 5G technology on the peak of China's carbon emission[J]. China Environmental Science, 2021, 41(3):1447-1454.
[40]
Wu H J, Gao L M,Yuan Z W. Life cycle assessment of phosphorus use efficiency in crop production system of three crops in Chaohu Watershed, China[J]. Journal of Cleaner Production, 2016,139(12):1298-1307.
[41]
Liang L, Wang Y C, Bradley G, et al. Agricultural subsidies assessment of cropping system from environmental and economic perspectives in North China based on LCA[J]. Ecological indicators, 2019,96(1):351-360.
[42]
梁龙,陈源泉,高旺盛,等.华北平原冬小麦-夏玉米种植系统生命周期环境影响评价[J]. 农业环境科学学报, 2009,28(8):1773-1776.Liang L, Chen Y Q, Gao W S, et al. Life cycle environmental impact assessment in winter wheat-summer maize system in North China Plain[J]. Journal of Agro-Environment Science, 2009,28(8):1773-1776.
[43]
Wang C, Li X L, Gong T T, et al. Life cycle assessment of wheat-maize rotation system emphasizing high crop yield and high resource use efficiency in Quzhou County[J]. Journal of Cleaner Production, 2014,68(4):56-63.
[44]
Zhang X Q, Pu C, Zhao X, et al. Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat-summer maize cropping system of the North China Plain[J]. Ecological Indicators, 2016,67(8):821-829.
[45]
王钰乔,濮超,赵鑫,等.中国小麦、玉米碳足迹历史动态及未来趋势[J]. 资源科学, 2018,40(9):1800-1811.Wang Y Q, Pu C, Zhao X, et al. Historical dynamics and future trends of carbon footprint of wheat and maize in China[J]. Resources Science, 2018,40(9):1800-1811.
[46]
Qi J Y, Yang S T, Xue J F, et al. Response of carbon footprint of spring maize production to cultivation patterns in the Loess Plateau, China[J]. Journal of Cleaner Production, 2018,187(6):525-536.
[47]
Cui J X, Yan P, Wang X L, et al. Integrated assessment of economic and environmental consequences of shifting cropping system from wheat-maize to monocropped maize in the North China Plain[J]. Journal of Cleaner Production, 2018,193(8):524-532.
[48]
姜振辉,杨旭,刘益珍,等.春玉米-晚稻与早稻-晚稻种植模式碳足迹比较[J]. 生态学报, 2019,39(21):8091-8099.Jiang Z H, Yang X, Liu Y Z, et al. Comparison of carbon footprint between spring maize-late rice and early rice-late rice cropping system[J]. Acta Ecologica Sinica, 2019,39(21):8091-8099.
[49]
Samarappuli D, M T Berti. Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production[J]. Journal of Cleaner Production, 2018,194(9):515-524.
[50]
Batlle-Bayer L, Bala A, Lemaire E, et al. An energy- and nutrient-corrected functional unit to compare LCAs of diets[J]. Science of the Total Environment, 2019,671(6):175-179.
[51]
政府间气候变化专门委员会网站[EB/OL]. https://www.ipcc.ch/. The website of the Intergovernmental Panel on Climate Change[EB/OL]. https://www.ipcc.ch/.
[52]
Glenn A J, Tenuta M, Amiro B D, et al. Nitrous oxide emissions from an annual crop rotation on poorly drained soil on the Canadian Prairies[J]. Agricultural and Forest Meteorology, 2012,166-167(12):41-49.
[53]
王璐.夏玉米农田土壤二氧化碳排放通量研究[D]. 合肥:安徽农业大学, 2012.Wang L. The investigation of soil carbon dioxide emission of the summer maize farmland[D]. Hefei:Anhui Agricultural University, 2012.
[54]
Abdalla M, Song X, Ju X, et al. Calibration and validation of the DNDC model to estimate nitrous oxide emissions and crop productivity for a summer maize-winter wheat double cropping system in Hebei, China[J]. Environmental Pollution, 2020,262(7), DOI:10.1016/j.envpol.2020.114199.
[55]
Li C S, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events:1. Model structure and sensitivity[J]. Journal of Geophysical Research-Atmospheres, 1992,97(6):9759-9776.
[56]
范兰,吕昌河,陈朝.EPIC模型及其应用[J]. 地理科学进展, 2012,31(5):584-592.Fan L, Lv C H, Chen C. EPIC model and its application[J]. Progress in Geography, 2012,31(5):584-592.
[57]
IPCC. Greenhouse gases from agricultural soils[C]//Houghton J T. eds. Greenhouse Gas Inventory Reference Manual:Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Bracknell:UK Meteological Office, 1997.
[58]
Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proc. Natl. Acad. Sci., 2009,106(9):3041-3046.
[59]
Feng C, Yan G, Zhou Z, et al. Annual emissions of nitrous oxide and nitric oxide from a wheatemaize cropping system on a silt loam calcareous soil in the North China Plain[J]. Soil Biology & Biochemistry, 2012,48(5):10-19.
[60]
Gao B, Ju X T, Su F M, et al. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain:A two-year field study[J]. Science of the total environment, 2014,472(2):112-124.
[61]
韩冰,王效科,逯非,等.中国农田土壤生态系统固碳现状和潜力[J]. 生态学报, 2008,(2):612-619.Han B, Wang X K, Lu F, et al. Soil carbon sequestration and its potential by cropland ecosystems in China[J]. Acta Ecologica Sinica, 2008,(2):612-619.
[62]
Lu F, Wang X K, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland[J]. Global Change Biology, 2009,15(2):281-305.
[63]
陈新平.小麦-玉米轮作体系养分资源综合管理理论与实践[M]. 北京:中国农业大学出版社, 2006:203-205.Chen X P. Theory and practice of comprehensive management of nutrient resources in wheat maize rotation system[M]. Beijing:China Agricultural University Press, 2006:203-205.
[64]
Gaynor, J D A C, Findlay W I. Soil and phosphorus loss from conservation and conventional tillage in corn production[J]. Journal of Environmental Quality, 1995,24(4):734-741.
[65]
Van Calker K J, Berentsen P B M, Boer De I J M, et al. An LP-model to analyse economic and ecological sustainability on Dutch dairy farms:model presentation and application for experimental farm "de Marke"[J]. Agricultural Systems, 2004,82(2):139-160.
[66]
Audsley E, Alber S, Clift R, et al. 1997. Harmonisation of environmental life cycle assessment for agriculture[R]. Final Report, Concerted Action AIR3-CT94-2028, European Commission DG VI, Brussels.
[67]
Huijbregts M A J, Thissen U, Jager T, et al. Priority assessment of toxic substances in life cycle assessment. Part II:assessing parameter uncertainty and human variability in the calculation of toxicity potentials[J]. Chemosphere, 2000,41(8):575-588.
[68]
Ilari A, Duca D, Toscano G, et al. Evaluation of cradle to gate environmental impact of frozen green bean production by means of life cycle assessment[J]. Journal of cleaner production, 2019,236(11), DOI:10.1016/j.jclepro.2019.117638.
[69]
Benis K, Ferrao, Paulo. Potential mitigation of the environmental impacts of food systems through urban and peri-urban agriculture (UPA) e a life cycle assessment approach[J]. Journal of Cleaner Production, 2017,140(1):784-795.
[70]
Aitor P A, Cristina R, Andreas C. Impact assessment methods in Life Cycle Assessment and their impact categories[EB/OL]. Greendelta, 2015.
[71]
Menoufi, Karim A I. Life cycle analysis and life cycle impact assessment methodologies:A state of the art[D]. Leida:Universitat de Lleida, 2011.
[72]
Fathollahi H, Mousavi-Avval S H, Akram A, et al. Comparative energy, economic and environmental analyses of forage production systems for dairy farming[J]. Journal of Cleaner Production, 2018, 182(5):852-862.
[73]
Lindeijer E. Normalisation and valualtion. In:Udo de Haes (ed.). Towards a methodology for life cycle impact assessment[M]. Brussels:Society of Environmental Toxicology and Chemistry (SETAC), 1996.
[74]
Simapro软件官方网站[EB/OL]. https://simapro.com/. The website of the LCA software:simapro. https://simapro.com/.
[75]
亿科环境科技有限公司网站:生命周期节能减排(ECER)评估-eBalance软件介绍[EB/OL]. http://goo.gl/pNX1Bs. IKE, 2012b. Introduction of life cycle energy conservation & emission reduction (ECER) assessment (in Chinese) accessed in October 2014.http://goo.gl/pNX1Bs.
[76]
亿科环境科技有限公司网站:CLCD数据库介绍[EB/OL]. http://www.ike-global.com/products-2/chinese-lca-database-clcd. IKE, 2012a. Chinese Life Cycle Database-CLCD accessed in March 2015. http://www.ike-global.com/products-2/chinese-lca-database-clcd.
[77]
Herrmann I T, Moltesen A. Does it matter which Life Cycle Assessment (LCA) tool you choose?-a comparative assessment of SimaPro and GaBi[J]. Journal of Cleaner Production, 2015,86(1):163-169.
[78]
张丹.中国粮食作物碳足迹及减排对策分析[D]. 北京:中国农业大学, 2017.Zhang D. Carbon footprint and low carbon strategy for grain production in China[D]. Beijing:China Agricultural University, 2017.
[79]
Sleeswijk A W, Oers LFCMV, Guinee J B, et al. Normalisation in product life cycle assessment:An LCA of the global and European economic systems in the year 2000[J]. The Science of the total environment, 2008,390(1):227-240.
[80]
王明新,包永红,吴文良,等.华北平原冬小麦生命周期环境影响评价[J]. 农业环境科学学报, 2006,25(5):1127-1132.Wang M X, Bao Y H, Wu W L, et al. Life cycle environmental impact assessment of winter wheat in North China Plain[J]. Journal of Agro-Environment Science, 2006,25(5):1127-1132.
[81]
Li S B, Thompson M, Moussavi S, et al. Life cycle and economic assessment of corn production practices in the western US Corn Belt[J]. Sustainable Production and Consumption, 2021,27(6):1762-1774.
[82]
Gan Y T, Liang C, Campbell C A, et al. Carbon footprint of spring wheat in response to fallow frequency and soil carbon changes over 25years on the semiarid Canadian prairie[J]. European Journal of Agronomy, 2012,43(11):175-184.
[83]
Yang Y, Bae J, Kim J. Replacing gasoline with corn ethanol results in significant environmental problem-shifting[J]. Environmental Science and Technology, 2012,46(7):3671-3678.
[84]
Tsiropoulos I, Benjamin C, Martin K P. Energy and greenhouse gas assessment of European glucose production from corn e a multiple allocation approach for a key ingredient of the bio-based economy[J]. Journal of Cleaner Production, 2013,43(3):182-190.
[85]
Yu S, Tao J. Simulation based life cycle assessment of airborne emissions of biomass-based ethanol products from different feedstock planting areas in China[J]. Journal of Cleaner Production, 2009, 17(5):501-506.
[86]
Kim S, Dale B E. Life cycle assessment of fuel ethanol derived from corn grain via dry milling[J]. Bioresource Technology, 2008,99(12):5250-5260.
[87]
Pieragostini C, Aguirre P, Mussati M C. Life cycle assessment of corn-based ethanol production in Argentina[J]. Science of the total environment, 2014,472(2):212-225.
[88]
Cheroennet N, Suwanmanee U. Net energy gain and water footprint of corn ethanol production in Thailand[J]. Energy procedia, 2017, 118(8):15-20.
[89]
Yang Y. Life cycle freshwater ecotoxicity, human health cancer, and noncancer impacts of corn ethanol and gasoline in the U.S[J]. Journal of Cleaner Production, 2013,53(8):149-157.
[90]
Feng H, Rubin O D, Babcock B A. Greenhouse gas impacts of ethanol from Iowa corn:Life cycle assessment versus system wide approach[J]. Biomass & Bioenergy, 2010,34(6):912-921.