Microbialcommunitycharacteristics offilamentous sludge bulking at temperature shocking environment
GAO Chun-di, HAN Ying-lu, CHENG Li-yang, YANG Xiao-yang, BI Hao-hua, OU Jia-li, PENG Yong-zhen
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
摘要 为探究温度冲击引起的污泥膨胀机理,以生活污水为处理对象,采用SBR工艺分别运行温度骤降系统和温度梯度降低系统,利用Illumina MiSeq高通量测序技术分析温度变化过程中微生物群落整体变化,并对膨胀阶段优势丝状菌类型进行解析.结果表明,温度骤降系统优势丝状菌为微丝菌(Microthrixparvicella),SVI值升高至291mL/g以上,温度梯度降低系统优势丝状菌为Eikelboom Type 0092型丝状菌,SVI值稳定维持在250mL/g,因此Eikelboom Type 0092型丝状菌适宜在温度冲击环境中生长繁殖.温度冲击方式不同导致菌群组成具有差异性,Proteobacteria相对丰度均值为39.3%,其占比在不同阶段变化较小.两个系统在污泥膨胀阶段Actinobacteria和Chloroflexi的相对丰度占比不同.各样本中与去除有机物相关微生物菌群丰度均值为13.6%,Nitrospira其相对丰度均值为2.48%,占NOB总含量80%以上.温度梯度降低系统发生的Eikelboom Type 0092型丝状菌型污泥微膨胀,其出水水质没有发生严重恶化,COD和NH4+-N的去除效果均高于温度骤降系统.
Abstract:Temperature is the key important factor affecting sludge bulking. To investigate the mechanism of sludge bulking at different temperature shockings, themicrobial community structure and dominant filamentous bacteria in sequencing batch reactor (SBR) treating domestic sewage under abruptly/gradually temperature decreasing conditions were analyzed by Illumina MiSeq high-throughput sequencing technology. The results showed that Microthrix Parvicella was the dominant filamentous bacteria in the abruptly temperature dropping system in which the sludge volume index (SVI) increased up to 291mL/g, while filamentous bacteria Eikelboom Type 0092 was the dominant in the gradually decreasing system in whichthe SVI was maintained at 250mL/g. Therefore, temperature shocking can provide more suitable habitat for Eikelboom Type 0092. The temperature varying process will also lead to significant differences in the community structure. The relative abundance of Proteobacteria maintained at average of 39.3%, and showed little variation, but the Actinobacteria and Chloroflexi showed totally different trends. The mean relative abundance of microorganisms related to organic matter removal was stable at 13.6%, and for Nitrospira it was about 2.48% accounting for more than 80% of the total NOB. Limited filamentous bulking (LFB) of Eikelboom Type 0092 caused by gradually temperature decreasing could not lead to serious deterioration of effluent quality, and removal rate of COD and NH4+-N were better than temperature abruptly dropping system.
尚越飞,王申,宗倪,等.污水生物处理工艺低温下微生物种群结构[J].环境科学, 2020,41(10):4636-4643.Shang Y F, Wang S, Zong N, et al. Microbial community structure for sewage wastewater treatment plants in winter[J]. Environmental Science, 2020,41(10):4636-4643.
[2]
王淑莹,高春娣,彭永臻,等.SBR法处理工业废水中有机负荷对污泥膨胀的影响[J].环境科学学报, 2000,20(2):3-7.Wang S Y, Gao C D, Peng Y Z, et al. Influence of organic loading on sludge bulking[J]. Acta Scientiae Circumstantiae, 2000,20(2):3-7.
[3]
王杰,彭永臻,杨雄,等.温度对活性污泥沉降性能与微生物种群结构的影响[J].中国环境科学, 2016,36(1):109-116.Wang J, Peng Y Z, Yang X, et al. Effect of temperature on activated sludge settleability and microbial community structure[J]. China Environmental Science, 2016,36(1):109-116.
[4]
高春娣,张娜,韩徽,等.低温下丝状菌膨胀污泥的微生物多样性[J].环境科学, 2020,41(7):3373-3383.Gao C D, Zhang N, Han H, et al. Microbial diversity of filamentous sludge bulking at low temperature[J]. Environmental Science, 2020, 41(7):3373-3383.
[5]
Jiang X T, Ye L, Ju F, et al. Temporal dynamics of activated sludge bacterial communities in two diversity variant full-scale sewage treatment plants[J]. Applied Microbiology and Biotechnology, 2018, 102(21):9379-9388.
[6]
Wagner D S, Peces M, Nierychlo M, et al. Seasonal microbial community dynamics complicates the evaluation of filamentous bulking mitigation strategies in full-scale WRRFs[J]. Water Research, 2022,216.
[7]
王杰,薛同来,彭永臻,等.A/O系统中不同缺氧/好氧体积比对活性污泥沉降性能的影响[J].中国环境科学, 2016,36(2):443-452.Wang J, Xue T L, Peng Y Z, et al. Effect of different anoxic/aerobic volume ratio on activated sludge settleability in A/O system[J]. China Environmental Science, 2016,36(2):443-452.
[8]
王秀朵,秦莉,潘留明,等.低温下A2/O工艺污泥膨胀的微生物群落结构变化[J].中国给水排水, 2017,33(13):104-107,112.Wang X D, Qin L, Pan L M, et al. Microbial community structure change in an A2/O activated sludge bulking at low temperature[J]. China Water& Wastewater, 2017,33(13):104-107,112.
[9]
Speirs L, Nittami T, McIlroy S, et al. Filamentous bacterium Eikelboom type 0092 in activated sludge plants in Australia is a member of the phylum Chloroflexi[J]. Applied and environmental microbiology, 2009,75(8):2446-2452.
[10]
Erhart R, Bradford D, Seviour R J, et al. Development and Use of Fluorescent In Situ Hybridization Probes for the Detection and Identification of "Microthrix parvicella" in Activated Sludge[J]. Systematic and Applied Microbiology, 1997,20(2):310-318.
[11]
Regan J M, Harrington G W, Noguera D R. Ammonia-and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system[J]. Applied and environmental microbiology, 2002,68(1):73-81.
[12]
张琼,包鹏,彭永臻,等.低温条件对SBR工艺亚硝酸氧化菌种群结构的影响[J].环境工程, 2019,37(3):75-81.Zhang Q, Bao P, Peng Y Z, et al. Effect of low temperature on nitrite oxidation bacteria structure in sequencing batch reactors[J]. Environmental Engineering, 2019,37(3):75-81.
[13]
Fan N S, Qi R, Rossetti S, et al. Factors affecting the growth of Microthrix parvicella:Batch tests using bulking sludge as seed sludge[J]. Science of The Total Environment, 2017,609:1192-1199.
[14]
Fan N S, Qi R, Huang B C, et al. Factors influencing Candidatus Microthrix parvicella growth and specific filamentous bulking control:A review[J]. Chemosphere, 2020,244.
[15]
Eikelboom D H. Process control of activated sludge plants by microscopic investigation[M]. London, UK:IWA Publishing, 2000:127-143.
[16]
Wang J, Li Q, Qi R, et al. Sludge bulking impact on relevant bacterial populations in a full-scale municipal wastewater treatment plant[J]. Process Biochemistry, 2014,49(12):2258-2265.
[17]
Kumari S K, Marrengane Z, Bux F. Application of quantitative RT-PCR to determine the distribution of Microthrix parvicella in full-scale activated sludge treatment systems[J]. Applied Microbiology and Biotechnology, 2009,83(6):1135-1141.
[18]
高春娣,安冉,韩徽,等.Type 0092丝状菌污泥微膨胀在短程硝化中的实现[J].环境科学, 2019,40(8):3722-3729.Gao C D, An R, Han H, et al. Realization of limited filamentous bulking with Type 0092filamentous bacteria as the dominant filamentous bacteria in shortcut nitrification[J]. Environmental Science, 2019,40(8):3722-3729.
[19]
高春娣,孙大阳,安冉,等.间歇曝气下短程硝化耦合污泥微膨胀稳定性[J].环境科学, 2018,39(7):3271-3278.Gao C D, Sun D Y, An R, et al. Stability of nitritation combined with limited filamentous bulking under intermittent aeration J]. Environmental Science, 2018,39(7):3271-3278.
[20]
Speirs L B M, Rice D T F, Petrovski S, et al. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge[J]. Frontiers in Microbiology, 2019,10.
[21]
Andersen M H, McIlroy S J, Nierychlo M, et al. Genomic insights into Candidatus Amarolinea aalborgensis gen. nov., sp. nov., associated with settleability problems in wastewater treatment plants[J]. Systematic and Applied Microbiology, 2019,42(1):77-84.
[22]
贺赟,李魁晓,王佳伟,等.不同季节城市污水处理厂微生物群落特性[J].环境科学, 2021,42(3):1488-1495.He Y, Li K X, Wang W J, et al. Microbial community structure of waste water treatment plants in different seasons[J]. Environmental Science, 2021,42(3):1488-1495.
[23]
Kragelund C, Levantesi C, Borger A, et al. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants[J]. FEMS Microbiology Ecology, 2007,59(3):671-682.
[24]
Kugler J H, Le Roes-Hill M, Syldatk C, et al. Surfactants tailored by the class Actinobacteria[J]. Frontiers in Microbiology, 2015,6:212.
[25]
Petrovski S, Dyson Z A, Quill E S, et al. An examination of the mechanisms for stable foam formation in activated sludge systems[J]. Water Research, 2011,45(5):2146-2154.
[26]
端正花,潘留明,陈晓欧,等.低温下活性污泥膨胀的微生物群落结构研究[J].环境科学, 2016,37(3):1070-1074.Duan Z H, Pan L M, Chen X O, et al. Changes of microbial community structure in activated sludge bulking at low temperature[J]. Environmental Science, 2016,37(3):1070-1074.
[27]
Li Y, Zhang J, Chen Q, et al. Dokdonella kunshanensis sp. nov., isolated from activated sludge, and emended description of the genus Dokdonella[J]. International Journal of Systematic and Evolutionary Microbiology, 2013,63(4):1519-1523.
[28]
Qu J H, Yuan H L. Sediminibacterium salmoneum gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment of a eutrophic reservoir[J]. International Journal of Systematic and Evolutionary Microbiology, 2008,58(9):2191-2194.
[29]
Koch H, Lucker S, Albertsen M, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira[J]. Proceedings of the National Academy of Sciences, USA, 2015,112(36):11371-11376.
[30]
杨雄,彭永臻,宋姬晨,等.进水中碳水化合物分子大小对污泥沉降性能的影响[J].中国环境科学, 2015,35(2):448-456.Yang X, Peng Y Z, Song J C, et al. Effect of influent carbohydrates with different molecule-size on sludge settleability[J]. China Environmental Science, 2015,35(2):448-456.
[31]
Guo J H, Peng Y Z, Peng C Y, et al. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen[J]. Bioresource Technology, 2010,101(4):1120-1126.
[32]
吴涵,陈滢,刘敏,等.SBBR反应器中耐冷微生物的驯化与识别[J].化工学报, 2020,71(2):766-776.Wu H, Cheng Y, Liu M, et al. Domestication and identification of cold-resistant bacteria in SBBR reactor[J]. Journal of Chemical Industry and Engineering (China), 2020,71(2):766-776.
[33]
Ishii K, Fujitani H, Soh K, et al. Enrichment and physiological characterization of a cold-adapted nitrite-Oxidizing Nitrotoga sp. from an eelgrass sediment[J]. Applied and environmental microbiology, 2017,83(14).