Influences of environmental substrates on microbial quorum-sensing signals
CHENG Yang-juan1,2, HUANG Dan1,2, WANG Yu-fan1,2, WANG Mei-zhen1,2
1. School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; 2. Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
Abstract:Quorum sensing (QS) is a bacterial conversation mechanism that regulates free radical release, biofilm formation, and gene level transfer by releasing signaling molecules for intercellular communication. The media materials widely present in the environment can interact with signaling molecules and thus influence the behavior of microorganism populations. Although there are many reviews on QS signal molecules and their regulatory mechanisms, the effects of environmental substrates on intracellular and extracellular signal molecules have not been well synthesized. Therefore, this study aims to elucidate the structure-function relationships between signal molecules and environmental substrates by reviewing the physicochemical properties and biological functions of various signal molecules of microorganisms and evaluating the effects of environmental substrates, such as soil minerals, nanomaterials, biochar and natural small molecule compounds, on signal molecules, so as to provide a vital reference for the in-depth understanding of the QS regulation of microbial communities in a realistic environment.
Marketon M, Matthew R, Anatol E, et al. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones[J]. Journal of Bacteriology, 2002,184(20):5686-5695.
[2]
Nealson K, John W. Bacterial bioluminescence:its control and ecological significance[J]. Microbiological Reviews, 1979,43(4):496-518.
[3]
Rasmussen T, Michael G. Quorum-sensing inhibitors as antipathogenic drugs[J]. International Journal of Medical Microbiology, 2006,296 (2/3):149-161.
[4]
Sun, S, Bo C, Zi J, et al. Characterization of the multiple molecular mechanisms underlying RsaL control of phenazine-1-carboxylic acid biosynthesis in the rhizosphere bacterium Pseudomonas aeruginosa PA1201[J]. Molecular Microbiology, 2017,104(6):931-947.
[5]
Decho A, Norman R, Pieter T. Quorum sensing in natural environments:emerging views from microbial mats[J]. Trends in Microbiology, 2010,18(2):73-80.
[6]
Yates E, Bodo P, Catherine B, et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa [J]. Infection and Immunity, 2002,70(10):5635-5646.
[7]
Feng H J, Ding Y C, Wang M Z, et al. Where are signal molecules likely to be located in anaerobic granular sludge?[J]. Water Research, 2014,50(1):1-9.
[8]
Sheng H J, Wang F, Gu C G, et al. Sorption characteristics of N-acyl homserine lactones as signal molecules in natural soils based on the analysis of kinetics and isotherms[J]. RSC advances, 2018,8(17):9364-9374.
[9]
Miller, M B, Bonnie L B. Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2001,55:165-199.
[10]
Angelo P C, Denis F, Isabelle P, et al. Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere[J]. Environmental Microbiology, 2005,7(11):1796-808.
[11]
Pearson J P, Christian V D, Barbara H I. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals[J]. Journal of Bacteriology, 1999,181(4):1203-1210.
[12]
Decho A W, Rebecca L F, Ferry J L. Chemical challenges to bacterial AHL signaling in the environment[J]. Chemical Reviews, 2011,111(1):86-99.
[13]
Chin C M, Mei W S, Hen J T. Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes[J]. Applied Surface Science, 2010,256(20):6035-6039.
[14]
Junio H A, Daniel A T, Keivan A E, et al. Quantitative analysis of autoinducing peptide I (AIP-I) from Staphylococcus aureus cultures using ultrahigh performance liquid chromatography-high resolving power mass spectrometry[J]. Journal of Chromatography B, 2013,930:7-12.
[15]
Singh R, Pallab R. Quorum sensing-mediated regulation of staphylococcal virulence and antibiotic resistance[J]. Future Microbiology, 2014,9(5):669-681.
[16]
Zhang M, Kun S, Li S. Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain[J]. Microbiology, 2008,154(7):2060-2069.
[17]
McGaughey G B, Marc G, Anthony K R. π-stacking interactions:alive and well in proteins[J]. Journal of Biological Chemistry, 1998, 273(25):15458-15463.
[18]
Damte D, Elias G, Seung J L, et al. Evaluation of anti-quorum sensing activity of 97indigenous plant extracts from Korea through bioreporter bacterial strains Chromobacterium violaceum and Pseudomonas aeruginosa[J]. Microbial & Biochemical Technology, 2013,5(2):42-46.
[19]
Zamyatnin A A. Structural-functional diversity of the natural oligopeptides[J]. Progress in Biophysics and Molecular Biology, 2018,133:1-8.
[20]
Fuqua W C, Stephen C W, Greenberg E P. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994,176(2):269-275.
[21]
Chen X, Stephan S, Noelle P, et al. Structural identification of a bacterial quorum-sensing signal containing boron[J]. Nature, 2002, 415(6875):545-549.
[22]
Siller M, Rajendra P J, Zaid A P, et al. Functional analysis of the group A streptococcal luxS/AI-2system in metabolism, adaptation to stress and interaction with host cells[J]. BMC Microbiology, 2008,8(188):1-17.
[23]
Yeo S, Hyunjoon P, Yosep J, et al. Influence of gastrointestinal stress on autoinducer-2activity of two Lactobacillus species[J]. FEMS Microbiology Ecology, 2015,91(7):1-9.
[24]
Nichols J D, Matthew R J, Chung J C, et al. Temperature, not LuxS, mediates AI-2 formation in hydrothermal habitats[J]. FEMS Microbiology Ecology, 2009,68(2):173-181.
[25]
Jahid I K, Furkanur R M, Angela J H, et al. Effect of salinity and incubation time of planktonic cells on biofilm formation, motility, exoprotease production, and quorum sensing of Aeromonas hydrophila[J]. Food Microbiology, 2015,49:142-151.
[26]
Delisa M P, James J V, William E B. Mapping stress-induced changes in autoinducer AI-2 production in chemostat-cultivated Escherichia coli K-12[J]. Journal of Bacteriology, 2001,183(9):2918-2928.
[27]
Poplawsky A R, Dana M W, Pierre E R, et al. A gene for a dioxygenase-like protein determines the production of the DF signal in Xanthomonas campestris pv. campestris[J]. Molecular Plant Pathology, 2005,6(6):653-657.
[28]
Diggle S P, Pierre C, Paul W, et al. 4-quinolone signalling in Pseudomonas aeruginosa:old molecules, new perspectives[J]. International Journal of Medical Microbiology, 2006,296(2/3):83-91.
[29]
Hodgkinson J, Bowden S D, Galloway W, et al. Structure-activity analysis of the Pseudomonas quinolone signal molecule[J]. Journal of Bacteriology, 2010,192(14):3833-3837.
[30]
Ramage G, Stephen P S, Brian L W, et al. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule[J]. Applied and Environmental Microbiology, 2002,68(11):5459-5463.
[31]
Padder S A, Rajendra P A, Haseeb S. Quorum sensing:A less known mode of communication among fungi[J]. Microbiological Research, 2018,210:51-58.
[32]
Pedersen K. Exploration of deep intraterrestrial microbial life:current perspectives[J]. FEMS Microbiology Letters, 2000,185(1):9-16.
[33]
Kalia V C. Quorum sensing inhibitors:an overview[J]. Biotechnology Advances, 2013,31(2):224-245.
[34]
Flemming H W. Bacteria and archaea on Earth and their abundance in biofilms[J]. Nature Reviews Microbiology, 2019,17(4):247-260.
[35]
Yang S S, Qu C C, Manisha M, et al. Soil phyllosilicate and iron oxide inhibit the quorum sensing of Chromobacterium violaceum[J]. Soil Ecology Letters, 2021,3:22-31.
[36]
Naik S P, Jonathon S, San C, et al. Quorum sensing disruption in Vibrio harveyi bacteria by clay materials[J]. Journal of Agricultural and Food Chemistry, 2018,66(1):40-44.
[37]
Liu P L, Chen X, Chen W L. Adsorption of N-acyl-homoserine lactone onto colloidal minerals presents potential challenges for quorum sensing in the soil environment[J]. Geomicrobiology Journal, 2015,32(7):602-608.
[38]
刀国华.土壤粘粒矿物与信号分子CSF的互作及其对Bacillus subtilis自然转化的影响[D]. 武汉:华中农业大学, 2013. Dao G H. Interaction of soil clay minerals with signaling molecule CSF and effects on the natural transformation of Bacillus subtilis [D]. Wuhan:Huazhong Agricultural University, 2013.
[39]
Malmsten M V. Effects of amino acid composition on protein adsorption[J]. Journal of Colloid and Interface Science, 1996,178(1):160-167.
[40]
Gao J, Ma A Z, Zhuang X L, et al. Quorum sensing vs quorum quenching:a battle with no end in sight[M]. Springer, 2015:51-60.
[41]
Ji M Y, Wang X X, Muhammad U, et al. Effects of different feedstocks-based biochar on soil remediation:A review[J]. Environmental Pollution, 2022,294:118655.
[42]
Xiao X, Chen B L, Chen Z M, et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications:A critical review[J]. Environmental Science & Technology, 2018,52(9):5027-5047.
[43]
Masiello C A, Chen Y, Gao X D, et al. Biochar and microbial signaling:production conditions determine effects on microbial communication[J]. Environmental Science & Technology, 2013,47(20):11496-11503.
[44]
Sheng H J, Yuan Y, Xiang L L, et al. Sorption of N-acyl homoserine lactones on maize straw derived biochars:Characterization, kinetics and isotherm analysis[J]. Chemosphere, 2022,299:134446.
[45]
Gao X D, Cheng H Y, Ilenne D V, et al. Charcoal disrupts soil microbial communication through a combination of signal sorption and hydrolysis[J]. Acs Omega, 2016,1(2):226-233.
[46]
Grandclément C, Mélanie T, Solange M, et al. Quorum quenching:Role in nature and applied developments[J]. FEMS Microbiology Reviews, 2016,40(1):86-116.
[47]
Essandoh M, Bidhya K, Charles U P, et al. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar[J]. Chemical Engineering Journal, 2015,265:219-227.
[48]
Hornby J M, Ellen C J, Amber D L, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol[J]. Applied and Environmental Microbiology, 2001,67(7):2982-2992.
[49]
Ye R, Tyler J H, Kairat S, et al. Molecular catalysis science:Perspective on unifying the fields of catalysis[J]. Proceedings of the National Academy of Sciences, 2016,113(19):5159-5166.
[50]
张芸芸.氧化石墨烯在杀菌和抑膜中的作用及机制[D]. 杭州:浙江工商大学, 2019. Zhang Y Y. The role and mechanism of graohene oxide in bacterial inactivation and membrane inhibition[D]. Hangzhou:Zhejiang Gongshang University, 2019.
[51]
Kato N, Tomohiro M, Tomoyo N, et al. Control of gram-negative bacterial quorum sensing with cyclodextrin immobilized cellulose ether gel[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006,56:55-59.
[52]
Miller K P, Wang L, Chen Y P, et al. Engineering nanoparticles to silence bacterial communication[J]. Frontiers in Microbiology, 2015, 6(189).
[53]
Rahman A P, Vejaya k, Sipaut C S, et al. Size-dependent physicochemical and optical properties of silica nanoparticles[J]. Materials Chemistry and Physics, 2009,114(1):328-332.
[54]
Xiao X, Zhu W W, Liu X Y, et al. Impairment of biofilm formation by TiO2photocatalysis through quorum quenching[J]. Environmental Science & Technology, 2016,50(21):11895-11902.
[55]
Puetz E, Gazanis A, Keltsch, N G, et al. Communication breakdown:Into the molecular mechanism of biofilm inhibition by CeO2 nanocrystal enzyme mimics and how it can be exploited[J]. Acs Nano, 2022,16(10):1936-0851.
[56]
Lee S H, Seonki L, Kibaek L, et al. More efficient media design for enhanced biofouling control in a membrane bioreactor:quorum quenching bacteria entrapping hollow cylinder[J]. Environmental Science & Technology, 2016,50(16):8596-8604.
[57]
Jayaprada T, Hu J M, Zhang Y Y, et al. The interference of nonylphenol with bacterial cell-to-cell communication[J]. Environmental Pollution, 2020,257:113352.
[58]
Ali Syed G, Mohammad A A, Sajid J, et al. Antiquorum sensing activity of silver nanoparticles in P. aeruginosa:an in silico study[J]. In Silico Pharmacology, 2017,5(1):1-7.
[59]
Singh P K, Amy L S, Matthew R P, et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms[J]. Nature, 2000,407(6805):762-764.
[60]
Li N, Wang L J, Yan H C, et al. Effects of low-level engineered nanoparticles on the quorum sensing of Pseudomonas aeruginosa PAO1[J]. Environmental Science and Pollution Research, 2018,25(7):7049-7058.
[61]
Adonizio A L, Downum K, Bennett B C, et al. Anti-quorum sensing activity of medicinal plants in southern Florida[J]. Journal of Ethnopharmacology, 2006,105(3):427-435.
[62]
Kumar A L, Sanjay C A, Kumar R B, et al. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa[J]. Fitoterapia, 2015,102:84-95.
[63]
Hoang T T, Herbert P S. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI):a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis[J]. Journal of Bacteriology, 1999,18(17):5489-5497.
[64]
Christensen Q H, Tyler L G, Squire J B, et al. A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases[J]. Proceedings of the National Academy of Sciences, 2013,110(34):13815-13820.
[65]
Zeng Z, Qian L, Cao L, et al. Virtual screening for Quorum sensing inhibitors from the TCM database[J]. Applied Microbiology and Biotechnology, 2008,79(1):119-126.
[66]
Annapoorani A, Venugopal U, Radhakrishnan P, et al. Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa[J]. Journal of Computer-Aided Molecular Design, 2012,26(9):1067-1077.
[67]
Corral A, Abdelali D, Alvaro O, et al. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator[J]. Science Signaling, 2016,9(409):1.
[68]
杨宇生.东南景天根系分泌物与铜绿假单胞菌群体感应的交互作用研究[D]. 杭州:浙江工商大学, 2020. Yang Y S. Interaction between the root exudates of Sedum alfredii and the quorum sensing in Pseudomonas aeruginosa[D]. Hangzhou:Zhejiang Gongshang University, 2020.