Comparison of antibiotic resistance genes contamination in the dust on the return vent filters of air-conditioners in Wuhan hospital
QIU Wan-yue1, XIA Yu-he1,2, GONG Lin3, YUAN Feng-yun1, CHEN Qi1,4, LI Jia-hao1, LIANG Jian-sheng3, TANG Fei1
1. Institute of Environmental Medicine, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; 2. Hubei Provincial Center for Disease Prevention and Control, Wuhan 430079, China; 3. Department of Disinfection and Pest Control, Wuhan Centers for Disease Prevention and Control, Wuhan 430015, China; 4. Jiang'an District Center for Disease Prevention and Control, Wuhan 430010, China
Abstract:The objective of this study was to explore the contamination and disstrubution characteristics of antibiotic resistance genes (ARGs) in hospital environment.From November 2018 to April 2021, 127 dust samples on return vent filters from air-conditioners in different wards of 2 Wuhan hospitals were collected in multiple batches for qualitative and quantitative determination of β-lactam ARGs (mecA, blaTEM,blaCTX-M, blaSHV), carbapenem ARGs (blaKPC, blaNDM-1, blaIMP, blaVIM, blaOXA-51) and class 1integrase gene (intI1). Nine types of abovementioned ARGs and intI1were found in dust samples from different departments, with the average detection rates of 55.12%, 37.64% and 81.89% for β-lactam ARGs, carbapenem ARGs and intI1respectively. The average detection rate of β-lactam and carbapenem ARGs in ICU were significantly higher than in departments of internal medicine and surgery (P<0.05); The detection rate and relative abundance of blaTEM and mecA were highest in departments of internal medicine and surgery among the 4types of β-lactam ARGs, (P<0.05); the detection rate and relative abundance of blaSHV in ICU were higher than in other departments (P<0.05). Significantly higher detection rate and relative abundance were observed for blaNDM-1 than for blaKPC and blaIMPamong the 5 types of carbapenem ARGs in departments of internal medicine and surgery. (P<0.05). There was a significant positive correlation between intI1and 9 types of ARGs (P<0.05). This study confirmed the contamination of β-lactam ARGs, carbapenem ARGs and intI1in dusts retaining on the return vent filters of air-conditioners in 2hospitals, where blaTEM, mecA and blaNDM-1 prevailed in ICUs and departments of internal medicine and surgery. Accordingly it was suggested that there may be past and ongoing contamination and concomitant risk of horizontal transfer of ARGs among drug-resistant bacteria, such as MRSA, ESBLs-producing Enterobacteriaceae bacteria, carbapenem-resistant Escherichia coli and Acinetobacter baumannii, in air and relevant hospital environments. The contamination of β-lactam ARGs and carbapenem ARGs in ICU was worse than in departments of internal medicine and surgery, where higher prevalence of blaSHV was found. ICU may be the high-risk department of drug-resistant bacteria contamination.
Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii [J]. Nature Reviews Microbiology, 2007,5(12):939-951.
[2]
Patel G, Huprikar S, Factor S H, et al. Outcomes of carbapenem- resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies [J]. Infection Control and Hospital Epidemiology, 2008,29(12):1099-1106.
[3]
陈美恋,贾会学,李六亿.多重耐药菌感染监测及防控现状综述 [J]. 中国感染控制杂志, 2015,14(8):571-576. Chen M L, Jia X H, Li L Y. Monitoring, prevention and control of multidrug-resistant organism infection [J]. Chinese Journal of Infection Control, 2015,14(8):571-576.
[4]
国家卫生健康委员会.中国抗菌药物管理和细菌耐药现状报告(2019) [M]. 北京:中国协和医科大学出版社, 2019:137. National Health Commission of the People's Republic of China. Status Report on Antimicrobial Administraion and Antimicrobial Resistance in China (2019) [M]. Beijjing: Peking UnionI Medical College Press, 2019:137.
[5]
杨启文,吴安华,胡必杰,等.临床重要耐药菌感染传播防控策略专家共识 [J]. 中国感染控制杂志, 2021,20(1):1-14. Yang Q W, Wu A H, Hu B J, et al. Expert consensus on strategies for the prevention and control of spread of clinically important antimicrobial-resistant organisms [J]. Chinese Journal of Infection Control, 2021,20(1):1-14.
[6]
韩 颖,王艾嘉,田 磊,等.环境筛查系列措施对ICU物体表面多重耐药菌检出率的影响 [J]. 中国感染控制杂志, 2021,20(6):499-504. Han Y, Wang A J, Tan L, et al. Effect of environmental screening measures on isolation rate of multidrug-resistant organisms on object surface in intensive care unit [J]. Chinese Journal of Infection Control, 2021,20(6):499-504.
[7]
Suleyman G, Alangaden G, Bardossy A C. The role of environmental contamination in the transmission of nosocomial pathogens and healthcare-associated infections [J]. Current Infectious Disease Reports, 2018,20(126):12.
[8]
Cohen B, Liu J, Cohen A R, et al. Association between healthcare -associated infection and exposure to hospital roommates and previous bed occupants with the same organism [J]. Infection Control And Hospital Epidemiology, 2018,39(5):541-546.
[9]
Chemaly R F, Simmons S, Dale C J, et al. The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment [J]. Therapeutic Advances in Infectious Disease, 2014,2:3-4.
[10]
Mirhoseini S H, Nikaeen M, Shamsizadeh Z, Khanahmad H. Hospital air: A potential route for transmission of infections caused by β-lactam-resistant bacteria [J]. American journal of infection control, 2016,44(8):898-904.
[11]
Noris F, Siegel J A, Kinney K A. Evaluation of HVAC filters as a sampling mechanism for indoor microbial communities [J]. Atmospheric Environment, 2011,45(2):338-46.
[12]
Gao J, Zhao X, Bao Y, et al. Antibiotic resistance and OXA-type carbapenemases-encoding genes in airborne Acinetobacter baumannii isolated from burn wards [J]. Burns, 2014,40(2):295-299.
[13]
白 艳,许 芳,王天琳,等.碳青霉烯耐药肺炎克雷伯菌的分子特征与抗菌药物活性相关性的研究进展 [J]. 中国药学杂志, 2016,51(5): 346-352. Bai Y, Xu F, Wang T L,et al.Advances in the interaction between molecular characteristics and antimicrobial activity of carbapenem resistant Klebsiella pneumoniae [J]. Chinese Pharmaceutical Journal, 2016,51(5):346-352.
[14]
李海英,王金波,白雅红,等.产超广谱β-内酰胺酶大肠埃希菌β-内酰胺酶基因研究 [J]. 中华医院感染学杂志, 2014,24(19):4699-4701. Li H Y, Wang J B, Bai Y H, et al. Investigation of beta-lactamase genes in ESBLS producing Escherichia coli isolated from Baoji city, Shanxi Province [J]. Chinese Journal of Nosocomiology, 2014,24(19): 4699-4701.
[15]
孟 圆,孔德民,罗 红.金黄色葡萄球菌耐药基因及新型抗菌药物的研究进展 [J]. 中国微生态学杂志, 2019,31(5):595-600. Meng Y, Kong D M, Luo H. Research on drug-resistant genes and new anti-bacterial agents against Staphylococcus aureus [J]. Chinese Journal of Microecology, 2019,31(5):595-600.
[16]
Shekarabi M, Hajikhani B, Salimi Chirani A, et al. Molecular characterization of vancomycin-resistant Staphylococcus aureus strains isolated from clinical samples: A three year study in Tehran, Iran [J]. PLoS One, 2017,12(8):e0183607.
[17]
Laffite A, Kilunga P I, Kayembe J M, et al. Hospital effluents are one of several sources of metal, antibiotic resistance genes, and bacterial markers disseminated in sub-saharan urban rivers [J]. Frontiers in Microbiology, 2016,7:1128.
[18]
M'Zali H F, Gascoyne Binzi M D, Heritage J, et al. Detection of mutations conferring extended-spectrum activity on SHV beta- lactamases using polymerase chain reaction single strand conformational polymorphism (PCR-SSCP) [J]. The Journal of Antimicrobial Chemotherapy, 1996,37(4):797-802.
[19]
Woodford N, Ellington M J, Coelho J M, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp [J]. International Journal of Antimicrobial Agents, 2006,27(4):351- 353.
[20]
Dallenne C, Da C A, Decre D, et al. Development of a set of multiplex PCR assays for the detection of genes encoding important β- lactamases in Enterobacteriaceae [J]. The Journal of Antimicrobial Chemotherapy, 2010,65(3):490-495.
[21]
杜 茜,李劲松.微生物气溶胶污染监测检测技术研究进展 [J]. 解放军预防医学杂志, 2011,29(6):455-458. Du Q, Li J S. Research progress in monitoring and detecting microbial aerosol pollution [J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2011,29(6):455-458.
[22]
Nunes B A M, Nunes Z D G, Asensi M D, et al. Characterization of coagulase negative staphylococci isolated from hospital indoor air and a comparative analysis between airborne and inpatient isolates of Staphylococcus epidermidis [J]. Journal of Medical Microbiology, 2012,61(8):1136-1145.
[23]
Price D L, Simmons R B, Crow S A Jr, et al. Mold colonization during use of preservative treated and untreated air filters, including HEPA filters from hospitals and commercial locations over an 8-year period (1996~2003) [J]. Journal of Industrial Microbiology & Biotechnology, 2005,32(7):319-321.
[24]
Li X, Wu Z, Dang C, et al. A metagenomic-based method to study hospital air dust resistome [J]. Chemical Engineering Journal, 2021, 406:126854.
[25]
Li N, Chai Y, Ying G G, et al. Airborne antibiotic resistance genes in Hong Kong kindergartens [J]. Environmental Pollution, 2020,260: 114009.
[26]
Hoisington A, Maestre P, J Kinney A K, et al. Characterizing the bacterial communities in retail stores in the United States [J]. Indoor Air, 2016,26(6):857-868.
[27]
Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado [J]. Environmental Science & Technology, 2006,40(23):7445-7450.
[28]
徐冰洁,罗 义,周启星,等.抗生素抗性基因在环境中的来源、传播扩散及生态风险 [J]. 环境化学, 2010,29(2):169-178. Xu B J, Luo Y, Zhou Q X, et al. Sources, dissemination, and ecological risks of antibiotic resistances genes (ARGs) in the environment [J]. Environmental Chemistry, 2010,29(2):169-178.
[29]
夏雨荷,谭 莉,徐 敏,等.武汉市某医院空调过滤网积尘中抗生素抗性基因污染状况 [J]. 卫生研究, 2019,48(4):583-588,593. Xia Y H, Tan L, Xu M, et al. Antibiotic resistance gene contamination status in air conditioning filter dust of a hospital in Wuhan City [J]. Journal of Hygiene Research, 2019,48(4):583-588,593.
[30]
Bradford P A. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat [J]. Clinical Microbiology Reviews, 2001,14(4):933- 951.
[31]
岳 欣,田文君,王 鹏,等.产超广谱β-内酰胺酶大肠埃希菌和肺炎克雷伯菌的耐药及TEM与SHV基因型分析 [J]. 中华医院感染学杂志, 2016,26(14):3125-3128. Yue X, Tan W J, Wang P, et al. Analysis of drug resistance of ESBLs-producing Escherichia coli and Klebsiella pneumonia and genotypes of TEM and SHV [J]. Chinese Journal of Nosocomiology, 2016,26(14):3125-3128.
[32]
Bauernfeind A, Stemplinger I, Jungwirth R, et al. Sequences of beta-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2and relationship of their amino acid sequences with those of other beta-lactamases [J]. Antimicrobial Agents and Chemotherapy, 1996,40(2):509-513.
[33]
房文艳.医院空气环境微生物污染检测方法建立及其应用研究 [D]. 哈尔滨:哈尔滨工业大学, 2015. Fang W Y. The establishment of method for detecting the a irborne microbes in the hospital and its a pplications [D]. Harbin: Harbin Institute of Technology.
[34]
乔红英.2016年-2020年医院多重耐药菌监测分析 [J]. 中国卫生检验杂志, 2021,31(10):1261-1264. Qiao Y H. Surveillance and analysis of multi-drug resistant bacteria in hospitals from 2016 to 2020 [J]. Chinese Journal of Health Laboratory Technology, 2021,31(10):1261-1264.
[35]
任益慧.SHV型β-内酰胺酶在革兰阴性杆菌中的分子特征及进化研究 [D]. 郑州:郑州大学, 2018. Ren Y H. Molecular characterization and evolution of SHV-type beta-lactamases in Gram-negative bacilli [D]. Zhengzhou: Zhengzhou University, 2018.
[36]
Weterings V, Bosch T, Witteveen S, et al. Next-generation sequence analysis reveals transfer of methicillin resistance to a methicillin- susceptible Staphylococcus aureus strain that subsequently caused a methicillin-resistant Staphylococcus aureus outbreak: a descriptive study [J]. Journal of Clinical Microbiology, 2017,55(9):2808-2816.
[37]
许 渝,罗万军,王文娟,等.某儿童医院2016~2018年多重耐药菌感染分析 [J]. 中国消毒学杂志, 2021,38(1):32-35. Xu Y, Luo W J, Wang W J,et al. Analysis of multidrug-resistant organisms infection in a children's hospital from 2016 to 2018 [J]. Chinese Journal of Disinfection, 2021,38(1):32-35.
[38]
Gu B, Bi R, Cao X, et al. Clonal dissemination of KPC-2-producing Klebsiella pneumoniae ST11 and ST48 clone among multiple departments in a tertiary teaching hospital in Jiangsu Province, China [J]. Annals of Translational Medicine, 2019,7(23):716.
[39]
唐海飞,翁幸鐾,王 沁,等.大肠埃希菌临床株可移动遗传元件之遗传标记与耐药基因分析 [J]. 中华医院感染学杂志, 2015,25(20): 4570-4572,4591. Tang H F, Weng X B, Wang X, et al. Genetic markers of mobile genetic elements and resistant genes in Escherichia coli [J]. Chinese Journal of Nosocomiology, 2015,25(20):4570-4572,4591.
[40]
宋 文,孙倩楠,刘玉梅,等.228株铜绿假单胞菌β-内酰胺酶的检测及耐药性分析 [J]. 中华医院感染学杂志, 2020,30(2):165-169. Song W, Sun Q N, Liu Y M, et al. Detection of β-lactamase in 228strains of Pseudomonas aeruginosa and drug resistance [J]. Chinese Journal of Nosocomiology, 2020,30(2):165-169.
[41]
Bush K, Jacoby G A. Updated functional classification of beta- lactamases [J]. Antimicrobial Agents and Chemotherapy, 2010,54(3): 969-976.
[42]
林吴兵.多重耐药鲍曼不动杆菌碳青霉烯酶基因检测和多位点序列分型 [D]. 合肥:安徽医科大学, 2017. Lin W B. Detection of carbapenem gene and multilocus sequence typing of multi-drug resistance Acinetobacter baumannii [D]. Hefei: Anhui Medical University, 2017.
[43]
王盛书.NDM-1泛耐药菌流行病学及分子特征研究 [D]. 北京:中国人民解放军军事医学科学院, 2017. Wang S S. Epidemiology and molecular characterization of NDM-1producing pan resistance bacteria in China [D]. Beijing: Academy of Military Medical Sciences.
[44]
刘 果.细菌间NDM-1质粒的水平传播研究 [D]. 北京:中国人民解放军军事医学科学院, 2016. Liu G. Horizontal transmission of multidrug-resistant NDM-1between bacteria [D]. Beijing: Academy of Military Medical Sciences.
[45]
邹凤梅,吴 玲,李可可,等.耐碳青霉烯类抗菌药物革兰阴性杆菌临床分布及耐药基因调查 [J]. 临床检验杂志, 2021,39(8):607-610. Zou F M, Wu L, Li K K, et al. Distribution of carbapenem resistance gram-negative bacilli and investigation of drug resistance gene [J]. Chinese Journal of Clinical Laboratory Science, 2021,39(08):607-610.
[46]
段达荣,蔡莎莎,朱晔晶,等.三种消毒剂对重症监护病房物体表面耐碳青霉烯类肠杆菌消毒效果比较 [J]. 中国消毒学杂志, 2019,36(3): 231-233. Duan D R, Cai S S, Zhu Y J, et al. Comparison of disinfection effects of three disinfectants on carbapenem-resistant Enterobacter on surfaces in intensive care units [J]. Chinese Journal of Disinfection, 2019,36(3):231-233.
[47]
王 锦,邵明鑫,王 虹,等.不同专业重症监护病房多重耐药菌医院感染特征 [J]. 中国感染控制杂志, 2021,20(12):1126-1132. Wang J, Shao M X, Wang H, et al. Characteristics of multidrug- resistant organism healthcare-associated infection in different specialized intensive care units [J]. Chinese Journal of Infection Control, 2021,20(12):1126-1132.
[48]
Partridge R S, Kwong M S, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance [J]. Clinical Microbiology Reviews, 2018,31(4):e00088-17.
[49]
Ma L, Zhang X X, Cheng S, et al. Occurrence, abundance and elimination of class 1integrons in one municipal sewage treatment plant [J]. Ecotoxicology, 2011,20(5):968-973.