Review of the satellite remote sensing researches on the non-CO2 greenhouse gas N2O
DAI Liu-xin1,2, LIANG Ming-jun3, ZHANG Ying1, XIE Yi-song1, LIU Xing-run4, LI Li1, ZHANG Xin-wei5, FAN Cheng1, LI Zheng-qiang1
1. State Environmental Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Emergency Management Science and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4. Beijing Institute of Environmental Features, Beijing 100143, China; 5. China Academy of Space Technology, Beijing 100080, China
Abstract:Nitrous oxide (N2O) has been ranked as the third largest greenhouse gas in the world, and its pollution and treatment are becoming the focus of ecological and environmental protection in China's "14 th Five-Year Plan". Climate change assessment and environmental protection generate a high-standard demand for satellite remotely sensed N2O monitoring. This article reviews the major advances in N2O satellite remote sensing and presents the historical process of N2O satellite observations from the perspective of nadir, limb, and occultation. The inversion algorithm, the optimal estimation algorithm, onion peeling algorithm, and differential optical absorption spectroscopy are discussed according to the observation methods. Compared with the international N2O satellite remote sensing which started earlier and had more mature theories and technologies, China's N2O satellite remotely sensed monitoring capability still has a large room to be explored. By summarizing the status of the research, this article presents the development trend of remote sensing and proposals for N2O satellite remote sensing, and finally provide the prospect of future development.
戴刘新, 梁明珺, 张莹, 谢一凇, 刘兴润, 李莉, 张新伟, 樊程, 李正强. 非二氧化碳温室气体氧化亚氮的卫星遥感研究综述[J]. 中国环境科学, 2023, 43(5): 2081-2094.
DAI Liu-xin, LIANG Ming-jun, ZHANG Ying, XIE Yi-song, LIU Xing-run, LI Li, ZHANG Xin-wei, FAN Cheng, LI Zheng-qiang. Review of the satellite remote sensing researches on the non-CO2 greenhouse gas N2O. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(5): 2081-2094.
Metz B, Davidson O, Bosch P, et al. IPCC:Climate change 2007-mitigation of climate change[R]. Switzerland:IPCC, 2007.
[2]
李肖正,岳甫均,周滨,等.渤海湾典型闸控入海河流水体N2O释放研究[J].中国环境科学, 2022,42(1):356-366. Li X Z, Yue F J, Zhou B, et al. N2O release from the water bodies of typical gate controlling tributaries of Bohai Bay[J]. China Environmental Science, 2022,42(1):356-366.
[3]
Tian H Q, Xu R T, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020,586(7828):248-256.
[4]
Minschwaner K R, Salawitch R J, McElroy M B. Absorption of solar radiation by O2:Implications for O3 and lifetimes of N2O, CFCl3, and CF2Cl2[J]. Journal of Geophysical Research, 1993,98(D6):10543-10561.
[5]
Bartram D M, Cai B F, Buendia E C, et al. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[R]. Switzerland:IPCC, 2019.
[6]
Brasseur G, Solomon S. Aeronomy of the middle atmosphere[M]. Dordrecht:Springer Dordrecht, 1984:XVI,444.
[7]
van den Heuvel R N, Hefting M M, Tan N C G, et al. N2O emission hotspots at different spatial scales and governing factors for small scale hotspots[J]. Science of the Total Environment, 2009,407(7):2325-2332.
[8]
Randel W J, Boville B A, Gille J, et al. Simulation of stratospheric N2O in the NCAR CCM2:Comparison with CLAES data and global budget analyses[J]. Journal of the Atmospheric Sciences, 1994,51:2834-2845.
[9]
Ricaud P, Attié J L, Chalinel R, et al. The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project[J]. Remote Sensing of Environment, 2021,266:112688.
[10]
Wells K C, Millet D B, Bousserez N, et al. Top-down constraints on global N2O emissions at optimal resolution:application of a new dimension reduction technique[J]. Atmospheric Chemistry and Physics, 2018,18(2):735-756.
[11]
Bovensmann H, Aben I, Van Roozendael M, et al. SCIAMACHY's view of the changing earth's environment[M]. Dordrecht:Springer Netherlands, 2011:175-216.
[12]
Chen S. A new technique for atmospheric chemistry observations[J]. Proceedings of SPIE, 2006,6031(1):60310R-60310R-60317.
[13]
Noël S, Bovensmann H, Wuttke M W, et al. Nadir, limb, and occultation measurements with SCIAMACHY[J]. Advances in Space Research, 2002,29(11):1819-1824.
[14]
Jones R L, Pyle J A. Observations of CH4 and N2O by the NIMBUS 7SAMS:A comparison with in situ data and two-dimensional numerical model calculations[J]. Journal of Geophysical Research, 1984,89:5263-5279.
[15]
Taylor F W, Rodgers C D, Whitney J, et al. Remote sensing of atmospheric structure and composition by pressure modulator radiometry from space:The ISAMS experiment on UARS[J]. Journal of Geophysical Research, 1993,98:10799-10814.
[16]
Roche A E, Kumer J B, Mergenthaler J L, et al. The cryogenic limb array etalon spectrometer (CLAES) on UARS:Experiment description and performance[J]. Journal of Geophysical Research, 1993,98:10763-10775.
[17]
Roche A E, Kumer J B, Nightingale R W, et al. Validation of CH4 and N2O measurements by the cryogenic limb array etalon spectrometer instrument on the Upper Atmosphere Research Satellite[J]. Journal of Geophysical Research, 1996,101:9679-9710.
[18]
Murtagh D P,Pardo J R. An overview of the Odin atmospheric mission[J]. Canadian Journal of Physics, 2002,80:309-319.
[19]
Urban J, Lautié N, Flochmoën E L, et al. Odin/SMR limb observations of stratospheric trace gases:Validation of N2O[J]. Journal of Geophysical Research, 2005,110(D9).
[20]
Urban J, Lautié N, Le Flochmoën E, et al. Odin/SMR limb observations of stratospheric trace gases:Level 2 processing of ClO, N2O, HNO3, and O3[J]. Journal of Geophysical Research:Atmospheres, 2005,110(D14).
[21]
Carli B, Alpaslan D, Carlotti M, et al. First results of MIPAS/ENVISAT with operational Level 2 code[J]. Advances in Space Research, 2004,33(7):1012-1019.
[22]
Fischer H, Birk M, Blom C, et al. MIPAS:An instrument for atmospheric and climate research[J]. Atmospheric Chemistry and Physics, 2008,8:2151-2188.
[23]
Raspollini P, Piro A, Hubert D, et al. ESA Level 2 version 8.22 products-Product Quality Readme File[R]. Europe:ESA-ESRIN, 2021.
[24]
Livesey N J, Snyder W V, Read W G, et al. Retrieval algorithms for the EOS Microwave limb sounder (MLS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(5):1144-1155.
[25]
Waters J W, Froidevaux L, Jarnot R F, et al. An overview of the EOS MLS experiment, Version 2.0[R]. JPL:D-15745/CL, 2004.
[26]
Waters J W, Froidevaux L, Harwood R S, et al. The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(5):1075-1092.
[27]
Barret B, Ricaud P, Santee M L, et al. Intercomparisons of trace gases profiles from the Odin/SMR and Aura/MLS limb sounders[J]. Journal of Geophysical Research, 2006,111:D21302.
[28]
Rodgers C D, Jones R L,Barnett J J. Retrieval of temperature and composition from NIMBUS 7SAMS measurements[J]. Journal of Geophysical Research, 1984,89:5280-5286.
[29]
Ridolfi M, Carli B, Carlotti M, et al. An optimized forward model and retrieval scheme for mipas near real time data processing[J]. Applied Optics, 2001,39(8):1323-1340.
[30]
Gunson M, Abbas M, Abrams M, et al. The Atmospheric trace Molecule Spectroscopy (ATMOS) experiment:Deployment on the ATLAS space shuttle missions[J]. Geophysical Research Letters, 1996,23(17):2333-2336.
[31]
Irion F, Gunson M R, Toon G C, et al. Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment version 3 data retrievals[J]. Applied optics, 2002,4133:6968-6979.
[32]
Yokota T, Nakajima H, Sugita T, et al. Improved Limb Atmospheric Spectrometer (ILAS) data retrieval algorithm for Version 5.20 gas profile products[J]. Journal of Geophysical Research, 2002,107:8216.
[33]
Irie H, Kondo Y, Koike M, et al. Validation of NO2 and HNO3 measurements from the Improved Limb Atmospheric Spectrometer (ILAS) with the version 5.20 retrieval algorithm:Improved limb atmospheric spectrometer (ILAS)[J]. Journal of Geophysical Research, 2002,107(D24).
[34]
Nakajima H, Sugita T, Yokota T, et al. Characteristics and performance of the Improved Limb Atmospheric Spectrometer-II (ILAS-II) on board the ADEOS-II satellite[J]. Journal of Geophysical Research, 2006,111(D11).
[35]
Ejiri M K, Terao Y, Sugita T, et al. Validation of the Improved Limb Atmospheric Spectrometer-II (ILAS-II) Version 1.4nitrous oxide and methane profiles[J]. Journal of Geophysical Research, 2006, 111(D22).
[36]
Bernath P F, McElroy C T, Abrams M C, et al. Atmospheric Chemistry Experiment (ACE):Mission overview[J]. Geophysical Research Letters, 2003,32,L15501.
[37]
Boone C D, Nassar R, Walker K A, et al. Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer[J]. Applied Optics, 2005,4433:7218-7231.
[38]
Strong K, Wolff M A, Kerzenmacher T E, et al. Validation of ACE-FTS N2O measurements[J]. Atmospheric Chemistry and Physics, 2008,8(16):4759-4786.
[39]
Li X Y, Cheng T H, Xu J, et al. Trace gas retrieval from AIUS:Algorithm description and O3 retrieval assessment[J]. Preprints, 2018:2018040257.
[40]
Wang H M, Li X Y, Xu J, et al. Assessment of retrieved N2O, NO2, and HF profiles from the atmospheric infrared ultraspectral sounder based on simulated spectra[J]. Sensors, 2018,18(7):2209.
[41]
Kanzawa H, Sugita T, Nakajima H, et al. Validation and data characteristics of nitrous oxide and methane profiles observed by the Improved Limb Atmospheric Spectrometer (ILAS) and processed with the Version 5.20algorithm[J]. Journal of Geophysical Research, 2003, 108:8003.
[42]
Sumi A, Nakajima T, Shibata A, et al. The ADEOS-II science plan Vol.1 science research project document Ver. 2[R]. Japan:National Space Development Agency of Japan Earth Observation Research Center, 1999.
[43]
Clerbaux C, Hadji-Lazaro J, Turquety S, et al. Trace gas measurements from infrared satellite for chemistry and climate applications[J]. Atmospheric Chemistry and Physics, 2003,3(5):1495-1508.
[44]
Lubrano A M, Masiello G, Matricardi M, et al. Retrieving N2O from nadir-viewing infrared spectrometers[J]. Tellus B:Chemical and Physical Meteorology, 2004,56:249-261.
[45]
Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY:Mission objectives and measurement modes[J]. Journals of the Atmospheric Sciences, 1999,56(2):125-150.
[46]
Buchwitz M, Noël S, Bramstedt K, et al. Retrieval of trace gas vertical columns from SCIAMACHY/ENVISAT near-infrared nadir spectra:first preliminary results[J]. Advances in Space Research, 2004,34(4):809-814.
[47]
Michael B, John Philip B. Retrieval of CH4, CO, and CO2 total column amounts from SCIAMACHY near-infrared nadir spectra:retrieval algorithm and first results[C]. Barcelona:SPIE Proceedings, 2004.
[48]
Buchwitz M, Rozanov V V, Burrows J P. A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1nadir radiances[J]. Journal of Geophysical Research:Atmospheres, 2000,105(D12):15231-15245.
[49]
Xiong X Z, Maddy E S, Barnet C D, et al. Retrieval of nitrous oxide from Atmospheric Infrared Sounder:Characterization and validation[J]. Journal of Geophysical Research:Atmospheres, 2014,119:9107-9122.
[50]
Chen C H, Ma P F, Chen L F, et al. Nitrous oxide profile retrievals from atmospheric infrared sounder and validation[J]. Atmosphere, 2022,13:619.
[51]
马鹏飞,陈良富,厉青,等.红外高光谱资料AIRS反演晴空条件下大气氧化亚氮廓线[J].光谱学与光谱分析, 2015,35(6):5. Ma P F, Chen L F, Li Q, et al. Simulation of atmospheric nitrous oxide profiles retrieval from AIRS observations[J]. Spectroscopy and Spectral Analysis, 2015,35(6):5.
[52]
马鹏飞,熊效振,陈良富,等.中国地区氧化亚氮浓度时空变化特征分析[J].光谱学与光谱分析, 2021,41(1):5. Ma P F, Xiong X Z, Chen L F, et al. Temporal and spatial characteristics of nitrous oxide concentration in China[J]. Spectroscopy and Spectral Analysis, 2021,41(1):5.
[53]
Beer R, Glavich T A, Rider D M. Tropospheric emission spectrometer for the Earth Observing System's Aura satellite[J]. Applied optics, 2001,40:2356-2367.
[54]
Kataoka F, Mitomi Y. Measurement of trace gases in East Asia from Satellite Infrared Radiometer[C]. San Diego:Proceedings of SPIE 2010.
[55]
Alvarado M J, Payne V H, Cady-Pereira K E, et al. Impacts of updated spectroscopy on thermal infrared retrievals of methane evaluated with HIPPO data[J]. Atmospheric Measurement Techniques, 2015,8(2):965-985.
[56]
Worden J, Kulawik S, Frankenberg C, et al. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances[J]. Atmospheric Measurement Techniques, 2012,5(2):397-411.
[57]
García O E, Schneider M, Ertl B, et al. The MUSICA IASI CH4and N2O products and their comparison to HIPPO, GAW and NDACC FTIR references[J]. Atmospheric Measurement Techniques, 2018, 11(7):4171-4215.
[58]
Brice B, Gouzenes Y, Flochmoen E, et al. Retrieval of Metop-A/IASI N2O Profiles and Validation with NDACC FTIR Data[J]. Atmosphere, 2021,12:219.
[59]
Chalinel R, Attié J L, Ricaud P, et al. Evaluation and global-scale observation of nitrous oxide from IASI on Metop-A[J]. Remote Sensing, 2022,14:1403.
[60]
Turquety S, Hadji-Lazaro J, Clerbaux C, et al. Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer[J]. Journal of Geophysical Research (Atmospheres), 2004,109:21301.
[61]
Vandenbussche S, Langerock B, Vigouroux C, et al. Nitrous oxide profiling from Infrared Radiances (NOPIR):Algorithm description, application to 10 years of IASI observations and quality assessment[J]. Remote Sensing, 2022,14:1810.
[62]
Kuze A, Suto H, Nakajima M, et al. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring[J]. Applied Optics, 2009,48(35):6716-6733.
[63]
Saitoh N, Kimoto S, Sugimura R, et al. Algorithm update of the GOSAT/TANSO-FTS thermal infrared CO2 product (version 1) and validation of the UTLS CO2 data using CONTRAIL measurements[J]. Atmospheric Measurement Techniques, 2016,9(5):2119-2134.
[64]
Eguchi N, Yokota T. Investigation of clear-sky occurrence rate estimated from CALIOP and MODIS observations[J]. Geophysical Research Letters, 2008,35(23).doi.org/10.1029/2008GL035897.
[65]
Kangah Y, Ricaud P, Attié J L, et al. Summertime upper tropospheric nitrous oxide over the Mediterranean as a footprint of Asian emissions:Tropospheric N2O over the Mediterranean[J]. Journal of Geophysical Research:Atmospheres, 2017,122(8):4746-4759.
[66]
Suto H, Kataoka F, Kikuchi N, et al. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2(TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2(GOSAT-2) during its first year in orbit[J]. Atmospheric Measurement Techniques, 2021,14(3):2013-2039.
[67]
Noël S, Reuter M, Buchwitz M, et al. Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm[J]. Atmospheric Measurement Techniques, 2022,15(11):3401-3437.
[68]
Noël S, Reuter M, Buchwitz M, et al. XCO2 retrieval for GOSAT and GOSAT-2 based on the FOCAL algorithm[J]. Atmospheric Measurement Techniques, 2021,14(5):3837-3869.
[69]
今須良一.ADEOS/IMG による大気微量成分の空間分布の観測[J].地球環境, 1999,4:43-52. Imasu Ryoichi. Observation of spatial distribution of atmospheric trace elements by ADEOS/IMG[J]. Global Environment, 1999,4:43-52.
[70]
Piters A J M, Bramstedt K, Lambert J C, et al. Overview of SCIAMACHY validation:2002-2004[J]. Atmospheric Chemistry and Physics, 2006,6(1):127-148.
[71]
Luchetta A, Serio C,Viggiano M. A neural network to retrieve atmospheric parameters from infrared high resolution sensor spectra[C]. Bangkok:IEEE, 2003.
[72]
Marks C J, Rodgers C D. A retrieval method for atmospheric composition from limb emission measurements[J]. Journal of Geophysical Research:Atmospheres, 1993,98(D8):14939-14953.
[73]
孙明晨.临近空间大气星光掩星技术研究[D].北京:中国科学院大学(中国科学院国家空间科学中心), 2021. Sun M C. Research on atmospheric stellar occultation technology in near space[J]. Beijing:National Space Science Center, CAS, 2021.
[74]
张斯敏,吴小成,孙明晨,等.星光掩星剥洋葱法反演臭氧密度[J].光谱学与光谱分析, 2022,42(1):203. Zhang S M, Wu X C, Sun M C, et al. Using onion-peeling method to lnverse ozone density based on the stellar occultation technology in the near space region[J]. Spectroscopy and Spectral Analysis, 2022, 42(1):203.
[75]
王雅鹏,李小英,陈良富,等.红外临边探测发展现状[J].遥感学报, 2016,20(4):513-527. Wang Y P, Li X Y, Chen L F, et al. Overview of infrared limb sounding[J]. Journal of Remote Sensing, 2016,20(4):513-527.
[76]
Remedios J J, Ruth S L, Rodgers C D, et al. Measurements of methane and nitrous oxide distributions by the improved stratospheric and mesospheric sounder:Retrieval and validation[J]. Journal of Geophysical Research, 1996,101:9843-9871.
[77]
Platt U, Stutz J. Differential optical absorption spectroscopy:principles and applications[M]. Berlin:Springer-verlag, 2008:1-597.
[78]
李正强,谢一凇,石玉胜,等.大气环境卫星温室气体和气溶胶协同观测综述[J].遥感学报, 2022,26(5):795-816. Li Z Q, Xie Y S, Shi Y S, et al. A review of collaborative remote sensing observation of greenhouse gases and aerosol with atmospheric environment satellites[J]. Journal of Remote Sensing, 2022,26(5):795-816.
[79]
Buchwitz M, de Beek R, Noël S, et al. Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS:version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval[J]. Atmospheric Chemistry and Physics, 2006,6(9):2727-2751.
[80]
王汝雯.基于WFM-DOAS温室气体柱浓度反演方法及应用研究[D].北京:中国科学技术大学, 2019. Wang R W. Algorithm research and application onthe greenhouse gases column density retrieval[J]. Beijing:University of Science and Technology of China, 2019.
[81]
Rodgers C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation[J]. Reviews of Geophysics, 1976,14(4):609-624.