Abstract:Compared with the ground-based greenhouse gases (GHGs) observation network, which is affected by the uneven distribution of stations, high precision and resolution remote sensing satellite monitoring has been rapidly developed as an effective means to obtain GHGs concentration information. In recent years, Japan, the European Union, the United States, Canada and China are actively planning to launch greenhouse gas remote sensing satellites and lay out the satellite networks. By reviewed the main greenhouse gas satellite observation technologies, deployments and application examples, the development status of greenhouse gas remote sensing satellite industry were summarized. On the one hand, the GHGs remote sensing satellite industry needs to make further breakthroughs in remote sensing imaging, satellite networking, cooperative observation between sky and ground, data processing and capital investment. On the other hand, it is necessary to strengthen the research of related field on high precision satellite, data assimilation system, sky-ground cooperative observation, inversion algorithm and satellite recycling technology. Meanwhile, in order to make further progress in the international competition, China's GHGs remote sensing satellite monitoring industry should actively develop in scientific and technological innovation and strategic deployment, supporting private capital investment, and participating in international exchanges and cooperation.
秦冰雪, 曾静静. 全球温室气体遥感卫星发展现状[J]. 中国环境科学, 2023, 43(9): 4961-4974.
QIN Bing-xue, ZENG Jing-jing. Development status of global greenhouse gas remote sensing satellite industry. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(9): 4961-4974.
United Nations Framework Convention on Climate Change. Kyoto Protocol to the United Nations framework convention on climate change[EB/OL]. https://unfccc.int/resource/docs/convkp/kpeng.pdf1997-12-10.
[2]
Feng L, Palmer P I, Zhu S, et al. Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate[J]. Nature Communications, 2022,13(1378):1-8.
[3]
郭英楠.大气二氧化碳浓度达历史顶点[J]. 生态经济, 2019,35(7):5-8. Guo Y N. The concentration of carbon dioxide in the atmosphere reaches an all-time high[J]. Ecological Economy, 2019,35(7):5-8.
[4]
Global Monitoring Laboratory. Mauna Loa CO2 monthly mean data (text) or (CSV)[EB/OL]. https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_mlo.txt2023-05-09.
[5]
Global Monitoring Laboratory. Globally averaged marine surface annual mean data[EB/OL]. https://gml.noaa.gov/webdata/ccgg/trends/ch4/ch4_mm_gl.txt2023-05-04.
[6]
O'Neill B C, Oppenheimer M. Dangerous climate impacts and the Kyoto Protocol[J]. Science, 2002,296(5575):1971-1972.
United Nations Framework Convention on Climate Change. Part Two:Action taken by the Conference of the Parties at its thirteenth session[EB/OL]. https://unfccc.int/sites/default/files/resource/docs/2007/cop13/eng/06a01.pdf2008-03-14.
[9]
United Nations Framework Convention on Climate Change. Paris agreement[EB/OL]. https://unfccc.int/sites/default/files/english_paris_agreement.pdf2015-12-12.
[10]
Intergovernmental Panel on Climate Change. 2019 refinement to the 2006 IPCC guide-lines for national greenhouse gas inventories[EB/OL]. https://www.ipcc.ch/site/assets/uploads/2019/12/19R_V0_01_Overview.pdf2019-05-12.
[11]
刘毅,王婧,车轲,等.温室气体的卫星遥感-进展与趋势[J]. 遥感学报, 2021,25(1):53-64. Liu y, Wang J, Che K, et al. Satellite remote sensing of greenhouse gases:progress and trends[J]. National Remote Sensing Bulletin, 2021, 25(1):53-64.
[12]
Shakun A, Korablev O, Moshkin B, et al. Fourier transform spectrometers for remote sensing of planetary atmospheres and surfaces[J]. CEAS Space Journal, 2017,9:399-409.
[13]
Mei L, Brydegaard M. Continuous-wave differential absorption lidar[J]. Laser & Photonics Reviews, 2015,9(6):629-636.
[14]
王晶晶,谈图,王贵师,等.全光纤双通道大气温室气体激光外差光谱探测技术研究[J]. 光谱学与光谱分析, 2021,41(2):354-359. Wang J J, Tan T, Wang G S, et al. Research on all-fiber dual-channel atmospheric greenhouse gases laser heterodyne detection technology[J]. Spectroscopy and Spectral Analysis, 2021,41(2):354-359.
[15]
Zhang W L, Liu Z Y, Wang H, et al. Research status of spatial heterodyne spectroscopy-A review[J]. Microchemical Journal, 2021, 166:106228.
[16]
Kobayashi H, Shimota A. Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation[J]. IEEE Transactions on Geoscience & Remote Sensing, 1999,37(3):1496-1507.
[17]
曹西凤,李小英,罗琪,等.星载红外高光谱传感器温度廓线反演综述[J]. 遥感学报, 2021,25(2):577-598. Cao X F, Li X Y, Luo Q, et al. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensors[J]. National Remote Sensing Bulletin, 2021,25(2):577-598.
[18]
Pierangelo C, Millet B, Esteve F, et al. MERLIN (Methane Remote Sensing Lidar Mission):an overview[J]. In EPJ Web of Conferences, 2016,119:1-4.
[19]
Parvitte B, Zéninari V, Thiébeaux C, et al. Infrared laser heterodyne systems[J]. Spectro-chimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2004,60(5):1193-1213.
[20]
卢兴吉.温室气体激光外差光谱测量技术与反演算法研究[D]. 合肥:中国科学技术大学, 2019. Lu X J. Spectral measurement of greenhouse gases by laser heterodyne spectrometer and retrieval algorithm[D]. Hefei:University of Science and Technology of China, 2019.
[21]
熊伟."高分五号"卫星大气主要温室气体监测仪(特邀)[J]. 红外与激光工程, 2019,48(3):24-30. Xiong W. Greenhouse gases monitoring instrument (GMI) on GF-5 satellite (invited)[J]. Infrared and Laser Engineering, 2019,48(3):24-30.
[22]
陈良富,尚华哲,范萌,等.高分五号卫星大气参数探测综述[J]. 遥感学报, 2021,25(9):1917-1931. Chen L F, Shang H Z, Fan M, et al. Mission overview of the GF-5 satellite for atmospheric parameter monitoring[J]. National Remote Sensing Bulletin, 2021,25(9):1917-1931.
[23]
Kuze A, Suto H, Nakajima M, et al. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring[J]. Applied Optics, 2009,48(35):6716-6733.
[24]
侯姗姗,雷莉萍,关贤华.温室气体观测卫星GOSAT及产品[J]. 遥感技术与应用, 2013,28(2):269-275. Hou S S, Lei L P, Guan X H. A general introduction to greenhouse gases observing satellite (GOSAT) and its products[J]. Remote Sensing Technology and Application, 2013,28(2):269-275.
[25]
Nakajima M, Suto H, Yotsumoto K, et al. Fourier transform spectrometer on GOSAT and GOSAT-2[EB/OL]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10563/105634O/Fourier-transform-spectrometer-on-GOSAT-and-GOSAT-2/10.1117/12.2304062.full?SSO=1&msclkid=1fe08d59d04011ec8ce9609aa54fbe4a2017-11-17.
[26]
Suto H, Kataoka F, Kikuchi N, et al. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2(TANSO-FTS-2) on the greenhouse gases observing SATellite-2(GOSAT-2) during its first year in orbit[J]. Atmospheric Measurement Techniques, 2021,14(3):2013-2039.
[27]
GOSAT-GW. About GOSAT-GW mission and project[EB/OL]. https://gosat-gw.nies.go.jp/gosat-gw01.html2022.
[28]
Buchwitz M, Schneising O, Burrows J P, et al. First direct observation of the atmospheric CO2 year-to-year increase from space[J]. Atmospheric Chemistry and Physics, 2007,3(16):339-345.
[29]
Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY:Mission objectives and measurement modes[J]. Journal of the Atmospheric Sciences, 1999,56(2):125-150.
[30]
Rusli S P, Hasekamp O, Brugh J A D, et al. Anthropogenic CO2 monitoring satellite mis-sion:the need for multi-angle polarimetric observations[J]. Atmospheric Measurement Techniques, 2021,14(2):1167-1190.
[31]
Centre National d'Etudes Spatiales. Microcarb[EB/OL]. https://microcarb.cnes.fr/en/MICROCARB/index.htm2023.
[32]
Spie digital library. Precision space freeform optics for Microcarb:final report[EB/OL]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11487/2571234/Precision-space-freeform-optics-for-Microcarb-final-report/10.1117/12.2571234.full?msclkid=289fffced02f11ec87230d61ec42ada0&SSO=12020-08-20.
[33]
United Nations Office for Outer Space Affairs. Methane remote sensing lidar mission[EB/OL]. http://www.unoosa.org/pdf/pres/copuos2013/tech-18.pdf?msclkid=9ffee271d03411ec8c30e31ba6cb84c92013-06-21.
[34]
Ehret G, Bousquet P, Pierangelo C, et al. MERLIN:A French-German space lidar mission dedicated to atmospheric methane[J]. Remote Sensing, 2017,9(10):1052.
[35]
Brumfiel G. Satellite to monitor carbon sinks sinks[J]. Nature, 2009,457:1067.
[36]
Liang A L, Gong W, Han G, et al. Comparison of satellite-observed XCO2 from GOSAT, OCO-2, and ground-based TCCON[J]. Remote Sensing, 2017,9(10):1033.
[37]
Crisp D. Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2(OCO-2)[EB/OL]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9607/1/Measuring-atmospher-ic-carbon-dioxide-from-space-with-the-Orbiting-Carbon/10.1117/12.2187291.full?SSO=1#:~:text=The%20Orbiting%20Carbon%20Observatory-2%20%28OCO-2%29%20is%20this%20first,and%20sinks%20on%20regional%20scales%20over%20the%20globe2015-09-08.
[38]
Crisp D, Pollock H R, Rosenberg R, et al. The on-orbit performance of the Orbiting Carbon Observatory-2(OCO-2) instrument and its radiometrically calibrated products[J]. Atmospheric Measurement Techniques, 2017,10(1):59-81.
[39]
Pan G N, Xu Y, Ma J Q. The potential of CO2 satellite monitoring for climate governance:A review[J]. Journal of Environmental Management, 2021,227:111423.
[40]
Taylor T E, Eldering A, Merrelli A, et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals[J]. Remote Sensing of Environment, 2020,251:112032.
[41]
National Aeronautics and Space Administration. GeoCarb:A new view of carbon over the Americas[EB/OL]. https://www.nasa.gov/feature/jpl/geocarb-a-new-view-of-carbon-over-the-americas2018-01-24.
[42]
Space News. NASA cancels GeoCarb greenhouse gas monitoring mission[EB/OL]. https://spacenews.com/nasa-cancels-geocarb-greenhouse-gas-monitoring-mission/2022-11-29.
[43]
ESA Earth Observation Portal. MethaneSAT[EB/OL]. https://www.eoportal.org/satellite-missions/methane-sat#performance-specifications2021-05-04.
刘良云,陈良富,刘毅,等.全球碳盘点卫星遥感监测方法、进展与挑战[J]. 遥感学报, 2022,26(2):243-267. Liu L Y, Chen L F, Liu Y, et al. Satellite remote sensing for global stocktaking:methods, progress and perspectives[J]. National Remote Sensing Bulletin, 2022,26(2):243-267.
[46]
Committee on Earth Observation Satellites. Carbon mapper[EB/OL]. https://ceos.org/document_management/Virtual_Constellations/AC-VC/Meetings/AC-VC-17/1.Monday-GHG/1.10_Duren.pdf?msclkid=6a0597cbd0ff11ec8c689aaa5de48dbc2021-06-14.
[47]
Wang J S, Kawa S R, Eluszkiewicz J, et al. A regional CO2 observing system simulation experiment for the ASCENDS satellite mission[J]. Atmospheric Measurement Techniques, 2014,14(23):12897-12914.
[48]
Jervis D, McKeever J, Durak B O A, et al. The GHGSat-D imaging spectrometer[J]. Atmospheric Measurement Techniques, 2021,14(3):2127-2140.
ESA Earth Observation Portal. GHGSat Constellation[EB/OL]. https://www.eoportal.org/satellite-missions/ghgsat-con2018-10-02.
[51]
Ran Y H, Li X. TanSat:a new star in global carbon monitoring from China[J]. Science Bulletin, 2019,64(5):284-285.
[52]
Liu Y, Wang J, Yao L, et al. The TanSat mission:preliminary global observations[J]. Science Bulletin, 2018,63(18):1200-1207.
[53]
漆成莉,顾明剑,胡秀清,等.风云三号卫星红外高光谱探测技术及潜在应用[J]. 气象科技进展, 2016,(1):88-93. Qi C L, Gu M J, Hu X Q, et al. FY-3 satellite infrared high spectral sounding technique and potential application[J]. Advances in Meteorological Science and Technology, 2016,(1):88-93.
[54]
陈卫荣.高分五号02星[J]. 卫星应用, 2021,(10):69. Chen W R. GF5-02 satellite[J]. Satellite Application, 2021(10):69.
[55]
刘付强,卢清荣.陆地生态系统碳监测卫星(句芒号)[J]. 卫星应用, 2022,(9):78. Liu F Q, Lu Q R. Terrestrial ecosystem carbon monitoring satellite (Goumang)[J]. Satellite Application, 2022,(9):78.
[56]
Wang X, Guo Z, Huang Y P, et al. A cloud detection scheme for the Chinese carbon dioxide observation satellite (TANSAT)[J]. Advances in Atmospheric Sciences, 2016,34(1):16-25.
[57]
Basu S, Guerlet S, Butz A, et al. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2[J]. Atmospheric Chemistry and Physics, 2013,13(17):8695-8717.
[58]
Hakkarainen J, Ialongo I, Tamminen J. Direct space-based observations of anthropogenic CO2 emission areas from OCO-2[J]. Geophysical Research Letters, 2016,43(21):11400-11406.
[59]
Nassar R, Hill T G, Mclinden C A, et al. Quantifying CO2 emissions from individual power plants from space[J]. Geophysical Research Letters, 2017,44(19):10045-10053.
[60]
Guo W Y, Shi Y S, Liu Y, et al. CO2 emissions retrieval from coal-fired power plants based on OCO-2/3 satellite observations and a Gaussian plume model[J]. Journal of Cleaner Production, 2023,397:136525.
[61]
Shi Y S, Zhao A M, Matsunaga T, et al. High-resolution inventory of mercury emissions from biomass burning in tropical continents during 2001-2017[J]. The Science of the Total Environment, 2019,653(FEB.25):638-648.
[62]
郑伟,陈洁,闫华,等.FY-3D/MERSI-Ⅱ全球火点监测产品及其应用[J]. 遥感学报, 2020,24(5):521-530. Zheng W, Chen J, Yan H, et al. Global fire monitoring products of FY-3D/MERSI-II andtheir applications[J]. Journal of Remote Sensing (Chinese), 2020,24(5):521-530.
[63]
Silva S J, Arellano A F. Characterizing regional-scale combustion using satellite retrievals of CO, NO2 and CO2[J]. Remote Sensing, 2017,9(7):744.
[64]
Palmer P I, Liang F, Lunt M F, et al. The added value of satellite observations of methane for understanding the contemporary methane budget[J]. The Royal Society, 2021,379(2210):20210106.
[65]
O'Neill S. Climate change action alights on satellite detection of methane[J]. Engineering, 2022,16(9):9-12.
[66]
刘宝锋,李俊锋,李飞,等.基于GOSAT卫星的全球近地面甲烷浓度时空分布特征分析[J]. 地理信息世界, 2016,23(5):75-79. Liu B F, Li J F, Li F, et al. Analysis of spatio-temporal distribution of methane concentrations near the ground based on GOSAT Satellite[J]. Geomatics World, 2016,23(5):75-79.
[67]
Wang F J, Maksyutov S, Janardanan R, et al. Atmospheric observations suggest methane emissions in north-eastern China growing with natural gas use[J]. Scientific Reports, 2023,12:18587.
[68]
Maasakkers J D, Varon D J, Elfarsdóttir A, et al. Using satellites to uncover large methane emissions from landfills[J]. Science Advances, 2022,8(32):eabn9683.
[69]
Zhang Y Z, Gautam R, Pandey S, et al. Quantifying methane emissions from the largest oil-producing basin in the United States from space[J]. Science Advances, 2020,6(17):eaaz5120.
[70]
Lauvaux T, Giron C, Mazzolini M, et al. Global assessment of oil and gas methane ultra-emitters[J]. Science, 2021,375(6580):557-561.
[71]
Irakulis-Loitxate I, Guanter L, Liu Y N, et al. Satellite-based survey of extreme methane emissions in the Permian basin[J]. Science Advances, 2021,7(27):eabf4507.
[72]
Cusworth D H, Duren R M, Thorpe A K, et al. Multisatellite imaging of a gas well blowout enables quantification of total methane emissions[J]. Geophysical Research Letters, 2021,48(2):e2020GL090864.
[73]
Jia M W, Li F, Zhang Y Z, et al. The Nord Stream pipeline gas leaks released approximately 220,000tonnes of methane into the atmosphere[J]. Environmental Science and Ecotechnology, 2022,12:100210.
[74]
Zhang L, Xiao J F, Li L, et al. China's sizeable and uncertain carbon sink:a perspective from GOSAT[J]. Chinese Science Bulletin, 2014,59(14):1547-1555.
[75]
李丽.基于GOSAT数据的全球碳通量分析[D]. 泰安:山东农业大学, 2014. Li L. Analysis on global carbon fluxes based on GOSAT Data[D]. Taian:Shandong Agricultural University, 2014.
[76]
He Z H, Zeng Z C, Lei L, et al. A data-driven assessment of biosphere-atmosphere interaction impact on seasonal cycle patterns of XCO2 using GOSAT and MODIS observations[J]. Remote Sensing, 2017,9(3):251.
[77]
He Z H, Lei L P, Zeng Z C, et al. Evidence of carbon uptake associated with vegetation greening trends in eastern China[J]. Remote Sensing, 2020,12(4):718.
[78]
Shekhar A, Chen J, Paetzold J C, et al. Anthropogenic CO2 emissions assessment of Nile Delta using XCO2 and SIF data from OCO-2satellite[J]. Environmental Research Letters, 2020,15(9):095010.
[79]
Lei L, Liu Q, Li Z, et al. A preliminary investigation of CO2 and CH4 concentration variations with the land use in Northern China by GOSAT[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, 2010:1141-1144.
[80]
Hedelius J K, Liu J J, Oda T, et al. Southern California megacity CO2, CH4, and CO flux estimates using ground-and space-based remote sensing and a Lagrangian model[J]. Atmospheric Chemistry and Physics, 2018,18(22):16271-16291.
[81]
Wu D E, Lin J C, Oda T, et al. Space-based quantification of per capita CO2 emissions from cities[J]. Environmental Research Letters, 2020,15(3):035004.
[82]
绳梦雅.多源碳卫星遥感监测的大气CO2浓度变化对人为排放的响应研究[D]. 北京:中国科学院大学, 2022. Sheng M Y. Response of atmospheric CO2 concentration changes to anthropogenic emissions using multi-source carbon satellite observations[D]. Beijing:University of Chinese Academy of Sciences, 2022.
[83]
王震山,绳梦雅,肖薇,等.基于多源碳卫星融合产品的中国地区XCO2与人为CO2排放时空变化[J]. 中国环境科学, 2023,43(3):1053-1063. Wang Z S, Sheng M Y, Xiao W, et al. Spatiotemporal changes of XCO2 and anthropogenic CO2 emission in China based on multi-source carbon satellite fusion product[J]. China Environmental Science, 2023,43(3):1053-1063.
[84]
何月,绳梦雅,雷莉萍等.长三角地区大气NO2和CO2浓度的时空变化及驱动因子分析[J]. 中国环境科学, 2022,42(8):3544-3553. He Y, Sheng M Y, Lei L P, et al. Driving factors and spatio-temporal distribution on NO2 and CO2 in the Yangtze River Delta[J]. China Environmental Science, 2022,42(8):3544-3553.
[85]
Yang D X, Hakkarainen J, Liu Y, et al. Detection of anthropogenic CO2 emission signatures with TanSat CO2 and with copernicus Sentinel-5 Precursor (S5P) NO2 measurements:first results[J]. Advances in Atmospheric Sciences, 2023,40(1):1-5.
[86]
Tollefson J. Next generation of carbon-monitoring satellites faces daunting hurdles[J]. Nature, 2016,533:446-447.
[87]
Dupuy E, Morino I, Deutscher N M, et al. Comparison of XH2O retrieved from GOSAT short-wavelength infrared spectra with observations from the TCCON network[J]. Remote Sensing, 2016, 8(5):414.
[88]
Kuhlmann G, Broquet G, Marshall J, et al. Detectability of CO2 emission plumes of cities and power plants with the Copernicus Anthropogenic CO2 Monitoring (CO2M) mission[J]. Atmospheric Measurement Techniques, 2019,12(12):6695-6719.
[89]
刘毅,吕达仁,陈洪滨等.卫星遥感大气CO2的技术与方法进展综述[J]. 遥感技术与应用, 2011,26(2):247-254. Liu Y, Lü D R, Chen H B, et al. Advances in technologies and methods for satellite remote sensing of atmospheric CO2[J]. Remote sensing technology and application, 2011,26(2):247-254.
[90]
麦博儒,邓雪娇,安兴琴,等.基于卫星遥感的广东地区对流层二氧化碳时空变化特征[J]. 中国环境科学, 2014,34(5):1098-1106. Mai B R, Deng X J, An X Q, et al. Spatial and temporal distributions of tropospheric CO2 concentrations over Guangdong province based on satellite observations[J]. China Environmental Science, 2014,34(5):1098-1106.
[91]
夏玲君,刘立新,李柏贞,等.我国中部地区大气CO2柱浓度时空分布[J]. 中国环境科学, 2018,38(8):2811-2819. Xia L J, Liu L X, Li B Z, et al. Spatial and temporal distribution characteristics of atmospheric CO2 in central China[J]. China Environmental Science, 2018,38(8):2811-2819.
[92]
Umwelt Bundesamt. Global Atmosphere Watch (GAW)[EB/OL]. https://www.umweltbundesamt.de/en/gaw#global-atmosphere-watch2022-03-02.
[93]
O'Dell C W, Eldering A, Wennberg P O, et al. Improved retrievals of carbon dioxide from orbiting carbon observatory-2 with the version 8ACOS algorithm[J]. Atmospheric Measurement Techniques, 2018,11(12):6539-6576.
[94]
Yang D X, Liu Y, Cai Z N, et al. First global carbon dioxide maps produced from TanSat measurements[J]. Advances in Atmospheric Sciences, 2018,35(6):621-623.
[95]
李静波,张莹,盖荣丽.基于机器学习的星载短波红外CO2柱浓度估算[J]. 中国环境科学, 2023,43(4):1499-1509. Li J B, Zhang Y, Gai R L. Estimation of the column concentration of carbon dioxide using spaceborne shortwave infrared spectrometer[J]. China Environmental Science, 2023,43(4):1499-1509.