Carbon emission monitoring based on analysis from “electricity-carbon” relationship of cement enterprises
ZHANG Shu-han1, CHEN Hui1, WANG Bin2, YU Run-xin3, MA Zhi-ting4, MIAO Yu-han4
1. Energy Development Research Institute, China Southern Power Grid, Guangzhou 510700, China; 2. China Southern Power Grid, Guangzhou 510700, China; 3. Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China; 4. Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610000, China
Abstract:Based on the advantages of electrical data-instantaneity, accuracy and wide coverage, this paper establishes the electricity-carbon index for cement enterprises. By exploring the relationship between purchased electricity and total carbon dioxide emissions using the machine learning method, we formulate and investigate both single-sample daily monitoring models and multiple-sample annual monitoring models. The numerical study demonstrates that the Lasso model outperforms the other nine regression models deployed in the monitoring models, with a goodness of fit (R2) of 0.915 and 0.831. The results indicate that the critical factors influencing the electricity-carbon index of cement enterprises are the electricity emission factors in the clinker production and the proportion of electricity consumption in the clinker section, thus underscoring the importance of electrical data in carbon emission monitoring. The proposed model has the potential to significantly improve the efficiency and reduce the cost of carbon emission monitoring for cement enterprises.
全国碳排放权交易市场上线交易正式启动 [EB/OL]. http://www.gov.cn/xinwen/2021-07/17/content_5625625.htm#1. The national carbon emission trading market is officially launched [EB/OL]. http://www.gov.cn/xinwen/2021-07/17/content_5625625.htm#1.
[2]
郭力军,孟 凯.碳交易"三可"机制设计及应用 [J]. 开放导报, 2013,168(3):108-112. Guo L J, Meng K. On Carbon trading mechanism and practice [J]. China Opening Journal, 2013,168(3):108-112.
[3]
魏丹青,赵建安,金迁致.水泥生产碳排放测算的国内外方法比较及借鉴 [J]. 资源科学, 2012,34(6):1152-1159. Wei D Q, Zhao J A, Jin Q Z. Comparison of domestic and international calculation methods of CO2 emission from cement production and the enlightenments for China [J]. Resources Science, 2012,34(6):1152-1159.
[4]
郑海明,蔡小舒.烟气连续排放监测系统相对准确度的测试评估 [J]. 计量学报, 2007,28(1):85-88. Zheng H M, Cai X S. Relative accuracy test evaluation for flue gas continuous emission monitoring systems [J]. Acta Metrologica Sinica, 2007,28(1):85-88.
[5]
张 钦,张 达,张希良.在线监测应用于中国碳排放监测的相关问题和制度建议 [J]. 环境经济研究, 2021,6(3):136-146. Zhang Q, Zhang D, Zhang X L. Application of online monitoring to China's carbon emission trading system: key issues and policy recommendations [J]. Journal of Environmental Economics, 2021,6(3): 136-146.
[6]
李 鹏,吴文昊,郭 伟.连续监测方法在全国碳市场应用的挑战与对策 [J]. 环境经济研究, 2021,6(1):77-92. Li P, Wu W H, Guo W. The Challenges and recommendations of application of the measurement-based monitoring methodology in national carbon market [J]. Journal of Environmental Economics, 2021, 6(1):77-92.
[7]
Zhang X, Schreifels J. Continuous emission monitoring systems at power plants in China: improving SO2 emission measurement [J]. Energy Policy, 2011,39(11):7432-7438.
[8]
Ackerman K V, Sundquist E T. Comparison of two U.S. Power-plant carbon dioxide emissions data sets [J]. Environmental Science & Technology, 2008,42(15):5688-5693.
[9]
Quick J C. Carbon dioxide emission tallies for 210 U.S. coal-fired power plants: a comparison of two accounting methods [J]. Journal of the Air & Waste Management Association, 2014,64(1):73-79.
[10]
Gurney K R, Huang J, Coltin K. Bias present in US federal agency power plant CO2 emissions data and implications for the US clean power plan [J]. Environmental Research Letters, 2016,11(6):064005.
[11]
Quick J C, Marland E. Systematic error and uncertain carbon dioxide emissions from U.S. power plants [J]. Journal of the Air & Waste Management Association, 2019,69(5):646-658.
[12]
李姚旺,张 宁,杜尔顺,等.基于碳排放流的电力系统低碳需求响应机制研究及效益分析 [J]. 中国电机工程学报, 2022,42(8):2830-2842. Li Y W, Zhang N, Du E S, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow [J]. Proceedings of the CSEE, 2022,42(8):2830-2842.
[13]
李 新,吕淑珍,王海滨,等.我国水泥工业碳排放特征及动态变化分析 [J]. 环境科学与技术, 2013,36(1):202-205. Li X, Lv S Z, Wang H B, et al. Characteristics of carbon dioxide emission from China's cement industry and its dynamic development [J]. Environmental Science & Technology, 2013,36(1):202-205.
[14]
王向华,朱晓东,程 炜,等.不同政策调控下的水泥行业CO2排放模拟与分析 [J]. 中国环境科学, 2007,27(6):851-856. Wang X H, Zhu X D, Cheng W, et al. Simulation and scenario analysis for CO2 discharge from the cement industry under different environmental policy control [J]. China Environmental Science, 2007, 27(6):851-856.
[15]
杨 楠,李艳霞,赵 盟,等.水泥熟料生产企业CO2直接排放核算模型的建立 [J]. 气候变化研究进展, 2021,17(1):79-87. Yang N, Li Y X, Zhao M, et al. Establishment of a CO2 direct emission accounting model for cement clinker manufacturers [J]. Climate Change Research, 2021,17(1):79-87.
[16]
张继义,姬文强,于 涛,等.水泥二氧化碳排放量预测及监测研究 [J]. 安全与环境学报, 2013,13(3):58-61. Zhang J Y, Ji W Q, Yu T, et al. Estimation and the monitoring research on carbon dioxide emission from the cement [J]. Journal of Safety and Environment, 2013,13(3):58-61.
[17]
庞翠娟.水泥工业碳排放影响因素分析及数学建模 [D]. 华南理工大学, 2012. Pang C J. Analysis of influence factors and mathematical modeling for the carbon emission of cement industry [D]. South China University of Technology, 2012.
[18]
赵建安,魏丹青.中国水泥生产碳排放系数测算典型研究 [J]. 资源科学, 2013,35(4):800-808. Zhao J A, Wei D Q. Carbon emission factors for cement plants in China [J]. Resources Science, 2013,35(4):800-808.
[19]
刘立涛,张 艳,沈 镭,等.水泥生产的碳排放因子研究进展 [J]. 资源科学, 2014,36(1):110-119. Liu L T, Zhang Y, Shen L, et al. A review of cement production carbon emission factors: progress and prospects [J]. Resources Science, 2014,36(1):110-119.
[20]
魏军晓,耿元波,赵建安,等.基于碳酸盐分析的水泥碳排放因子测算 [J]. 自然资源学报, 2016,31(8):1378-1387. Wei J X, Di Y B, Zhao J A, et al. Research on CO2 Emission factors of cement production by the measurement of carbonate [J]. Journal of Natural Resources, 2016,31(8):1378-1387.
[21]
Yu L, Qiang Z, Nielsen C, et al. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990~2020 [J]. Atmospheric Environment, 2011,45(1):147-154.
[22]
Shen L, Gao T M, Zhao J N, et al. Factory-level measurements on CO2 emission factors of cement production in China [J]. Renewable and Sustainable Energy Reviews, 2014,34:337-349.
[23]
IPCC(Intergovernmental Panel on Climate Change). IPCC good practice guidance and uncertainty management in national greenhouse gas inventories [EB/OL]. http://www.ipcc-nggip.igesorjp/public/gp/english/3_Industry.pdf.
[24]
IEA (International Energy Agency). Tracking industrial energy efficiency and CO2 emissions [EB/OL]. http://www.ieaorg/publications/freepublications/publication/tracking_emissions.pdf.
[25]
WBCSD-CSI(the Cement Sustainability Initiative of the World Business Council for Sustainable Development). CO2 and energy accounting and reporting standard for the cement industry [EB/OL]. http://wbesdcement.org/pdf/fl_co2%20protocol%20v3.pdf,2013-01-08/2013-08-27.
[26]
徐东耀,周 昊,刘 伟,等.我国水泥行业大气污染物排放特征 [J]. 环境工程, 2015,33(6):76-79,138. Xu D Y, Zhou H, Liu W, et al. Emission characteristics of air pollutants in China's cement industry [J]. Environmental Engineering, 2015,(6):76-79,138.
[27]
Ali M B, Saidur R, Hossain M S. A review on emission analysis in cement industries [J]. Renewable & Sustainable Energy Reviews, 2011,15(5):2252-2261.
[28]
贺晋瑜,何 捷,王郁涛,等.中国水泥行业二氧化碳排放达峰路径研究 [J]. 环境科学研究, 2022,35(2):347-355. He J Y, He J, Wang Y T, et al. Pathway of carbon emissions peak for cement industry in China [J]. Research of Environmental Sciences, 2022,35(2):347-355.
Initiative C S. CO2 accounting and reporting standard for the cement industry [R]. The World Business Council for Sustainable Development, 2005.
[31]
Deja J, Uliasz-Bochenczyk A, Mokrzycki E. CO2 emissions from polish cement industry [J]. International Journal of Greenhouse Gas Control, 2010,4(4):583-588.
[32]
魏军晓,耿元波,沈 镭,等.基于国内水泥生产现状的碳排放因子测算 [J]. 中国环境科学, 2014,34(11):2970-2975. Wei J X, Geng Y B, Shen L, et al. Calculation of CO2 emission factor on the present situation of the domestic cement production[J].China Environmental Science, 2014,34(11):2970-2975.
[33]
汪 澜.水泥生产CO2排放量计算方法及评述 [J]. 中国水泥, 2011,111(8):52-55. Wang L. Calculation method and review of CO2 emissions in cement production [J]. China Cement, 2011,111(8):52-55.
[34]
游士兵,严 研.逐步回归分析法及其应用 [J]. 统计与决策, 2017, 482(14):31-35. You S B, Yan Y. Stepwise regression analysis and its application [J]. Statistics & Decision, 2017,482(14):31-35.
[35]
胡春凤,田世明,苏 航.基于弹性网络模型的月度用电量预测方法 [J]. 电力工程技术, 2020,39(3):166-172. Hu C F, Tian S M, Su H. Monthly electricity consumption forecasting method based on elastic network model [J]. Electric Power Engineering Technology, 2020,39(3):166-172.
[36]
余文梦,张婷婷,沈大军.基于随机森林模型的我国县域碳排放强度格局与影响因素演进分析 [J]. 中国环境科学, 2022,42(6):2788-2798. Yu W M, Zhang T T, Shen D J. County-level spatial pattern and influencing factors evolution of carbon emission intensity in China: a random forest model analysis [J]. China Environmental Science, 2022, 42(6):2788-2798.
[37]
邢红涛,郭江龙,张 颖,等.基于变量选择和XGBoost组合模型的NO-x排放预测 [J]. 自动化与仪器仪表, 2021,261(7):21-25. Xing H T, Guo J L, Zhang Y, et al. NOx emission prediction based on variable selection and XGBoost combined model [J]. Automation & Instrumentation, 2021,261(7):21-25.
[38]
张 驰,郭 媛,黎 明.人工神经网络模型发展及应用综述 [J]. 计算机工程与应用, 2021,57(11):57-69. Zhang C, Guo Y, Li M. Review of development and application of artificial neural network models [J]. Computer Engineering and Applications, 2021,57(11):57-69.