Comprehensive risk assessment of key supervision units of soil pollution in Yangtze River Delta
JU Tie-nan1,2, LEI Mei1,2, GUO Guang-hui1,2, XU Yuan1,2, LOU Qi-jia1,2, ZHANG Yang1,2, ZHANG Jin-long1,2
1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:To evaluate the comprehensive risk of key regulatory units of soil pollution in the Yangtze River Delta, based on the risk assessment concept of "source pathway receptor", this paper innovatively integrated the "pathway" into the simulation method of potential pollution scope of the site for key industry enterprises over 50 years of history according to the production information of enterprises and years of natural environment information and evaluates the vulnerability of receptors and site hazards in the Yangtze River Delta according to the pollution scope. On this basis, this study compared the change of the receptor index of relocation enterprises before and after production and closure to evaluate the effect of environmental protection policy control. Finally, based on the site hazards and the vulnerability of peripheral receptors within the pollution range of the production enterprises, we constructed the risk classification at the county scale in the Yangtze River Delta and proposed priority control of county units. The results show that the chemical industry and electroplating industry are the pillar industries of the Yangtze River Delta, accounting for more than 85%, mainly distributed in the eastern region. By 2020, implementing environmental protection policies has effectively safeguarded environmental protection policies that more than 17 million people and protected approximately 23000km2 of agricultural land in the Yangtze River Delta from higher risks, reducing potential pollution by 42%. The study identified eight high-risk counties as priority control areas in the Yangtze River Delta in 2020, including Pudong New Area, Fuyang District, Jiading District, Zhangjiagang City, and Xiaoshan District.
[1] 国家统计局.中国统计年鉴(2019)[M]. 北京:中国统计出版社, 2019. National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2019. [2] 韩旭,豆建民.长三角一体化能重塑污染产业空间布局吗?[J]. 中国环境管理, 2022,14(3):88-96. Han X, Dou J M. Can the integration of Yangtze River Delta reshape the spatial distribution of pollution industry?[J]. Chinese Journal of Environmental Management, 2022,14(3):88-96. [3] 马志强,王琰,苏佳璐.长三角城市群工业绿色创新效率时空发展特征及动态演变分析[J]. 科技进步与对策, 2023,40(7):57-67. Ma Z Q, Wang Y, Su J L. Spatial-temporal development characteristics and dynamic evolution of industrial green innovation efficiency in the urban agglomerations of Yangtze River Delta[J]. Science & Technology Progress and Policy, 2023,40(7):57-67. [4] 张慧,高吉喜,宫继萍,等.长三角地区生态环境保护形势、问题与建议[J]. 中国发展, 2017,17(2):3-9. Zhang H, Gao J X, Gong J P, et al. Current situation,problems and suggestions on ecological environment protection in the Yangtze River Delta region[J]. China Development, 2017,17(2):3-9. [5] 韩龙飞,许有鹏,杨柳,等.近50年长三角地区水系时空变化及其驱动机制[J]. 地理学报, 2015,70(5):819-827. Han L F, Xu Y P, Yang L, et al. Temporal and spatial change of stream structure in Yangtze River Delta and its driving forces during 1960s~2010s[J]. Acta Geographica Sinica, 2015,70(5):819-827. [6] 宋志晓,刘瑞平,魏楠,等.长三角地区土壤环境问题及协同管控对策研究[J]. 环境科学与管理, 2021,46(8):15-19. Song Z X, Liu R P, Wei N, et al. Soil environmental problems and cooperative management countermeasures in Yangtze River Delta region[J]. Environmental Science and Management, 2021,46(8): 15-19. [7] 李嘉艺,孙璁,郑曦.基于适应性循环理论的区域生态风险时空演变评估:以长江三角洲城市群为例[J]. 生态学报, 2021,41(7): 2609-2621. Li J Y, Sun C, Zheng X. Assessment of spatio-temporal evolution of regionally ecological risks based on adaptive cycle theory:a case study of Yangtze River Delta urban agglomeration[J]. Acta Ecologica Sinica, 2021,41(7):2609-2621. [8] 贺桂珍,吕永龙.风险地图—环境风险管理的有效新工具[J]. 生态毒理学报, 2012,7(1):1-9. HE G Z, LV Y L. Environmental risk mapping:a new effective instrument for environmental risk management[J]. Asian Journal of Ecotoxicology, 2012,7(1):1-9. [9] 于露,车前进.基于GIS的区域环境风险综合评价——以珠海市为例[J]. 环境与发展, 2019,31(6):7-9. Yu L, Che Q J. Comprehensive evaluation of regional environmental risk based on GIS―Taking Zhuhai City as an example[J]. Environment and Development, 2019,31(6):7-9. [10] 卢蔚.区域重点行业环境风险源分析与管理策略研究——以深圳市坪山区为例[D]. 深圳:深圳大学, 2019. Lu W. Study on environmental risk source analysis and management strategy of regional key industry-take shenzhen pingshan district as an example[D]. Shenzhen: Shenzhen University, 2019. [11] Zabeo A, Pizzol L, Agostini P, et al. Regional risk assessment for contaminated sites Part 1: Vulnerability assessment by multicriteria decision analysis[J]. Environment International, 2011.37(8):1295-1306. [12] Giubilato E, Zabeo A, Critto A, el al. A risk-based methodology for ranking environmental chemical stressors at the regional scale[J]. Environment International, 2014,65:41-53. [13] 陈佳璇,郭丽婷,蔺文亭,等.京津冀区域环境风险特征与演变态势研判[J]. 环境影响评价, 2018,40(5):7-12. Chen J X, Guo L T, Lin W T, et al. Study on Characteristics and Evolvement Trend of Environmental Risks in Beijing-Tianjin-Hebei Region[J]. Environmental impact assessment, 2018,40(5):7-12. [14] 周夏飞,曹国志,於方,等.黄河流域水污染风险分区[J]. 环境科学, 2022,43(5):2448-2458. Zhou X F, Cao G Z, Yu F, et al. Risk zoning of water pollution in the Yellow River Basin[J]. Environmental Science, 2022,43(5):2448-2458. [15] 王思,张志娇,余璇,等.基于网格化的区域突发环境事件风险分区研究[J]. 环境科学与技术, 2021,44(5):220-228. Wang S, Zhang Z J, Yu X, et al. Risk zoning of regional environmental emergency based on gridded method[J]. Environmental Science & Technology, 2021,44(5):220-228. [16] 朱惠琴,席磊,郭梅修,等.基于信息扩散法的区域规划环境风险评价方法探讨[J]. 环境科学与管理, 2011,36(9):159-163. Zhu H Q, Xi L, Guo M X, et al. Discussion on the method for regional planning environmental risk assessment based on information diffusion method[J]. Environmental Science and Management, 2011,36(9):159-163. [17] 谭海剑,黄祖照,杨巧玲.遗留工业地块土壤污染详细调查布点密度探讨:基于边际效益递减原理[J]. 环境保护科学, 2021,47(6):140-144. Tan H J, Huang Z Z, Yang Q L. Optimal grid sampling density of soil pollution survey in residual industrial sites—based on principle of diminishing marginal benefits[J]. Environmental Protection Science, 2021,47(6):140-144. [18] 乔斐,王锦国,郑诗钰,等.重点区域建设用地污染地块特征分析[J]. 中国环境科学, 2022,42(11):5265-5275. Qiao F, Wang J G, Zheng S Y, et al. Characterization of contaminated construction sites in key regions[J]. China Environmental Science, 2022,42(11):5265-5275. [19] 孔林,刘杰民,韦艳,等.贵州省典型铅锌矿区居民血液总汞和甲基汞暴露及健康风险模型预测评估[J]. 环境科学研究, 2021,34(6): 1499-1508. Kong L, Liu J M, Wei Y, et al. Total mercury and methyl mercury in blood of inhabitant and their associated modelling prediction evaluation in typical lead-zinc mining region, Guizhou Province, China[J]. Research of Environmental Sciences, 2021,34(6):1499-1508. [20] 张蒙蒙,张超艳,郭晓欣,等.焦化场地包气带区土壤苯的精细化风险评估[J]. 环境科学研究, 2021,34(5):1223-1230. Zhang M M, Zhang C Y, Guo X X, et al. Refined risk assessment of soil benzene in unsaturated zone of coking site[J]. Research of Environmental Sciences, 2021,34(5):1223-1230. [21] 中共中央,国务院.长江三角洲区域一体化发展规划纲要[EB/OL]. 北京:国务院, (2019-12-01)[2023-03-02].http://www.gov.cn/zhengce/2019-12/01/content_5457442.htm. [22] 生态环境部.工矿用地土壤环境管理办法(试行)(生态环境部第3号令)[EB/OL]. 北京:生态环境部,(2018-05-13)[2023-03-02].https: //www.mee.gov.cn/gzk/gz/202112/t20211211_963802.shtml. [23] Rosenblatt M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956,27(3): 832-837. [24] Anderson T K. Kernel density estimation and K-means clustering to profile road accident hotspots[J]. Accident Analysis & Prevention, 2009,41(3):359-364. [25] 黄起,李敬平,郑峥,等.自然断点法在材料设备分类分级管理评价体系中的应用[J]. 住宅与房地产, 2023,(11):44-48. Huang Q, Li J P, Zheng Z, et al. Application of natural breakpoint method in classification management evaluation system of materials and equipment[J]. Housing and Real Estate, 2023,(11):44-48. [26] 生态环境部.农用地土壤污染状况详查点位布设技术规定(征求意见稿)[EB/OL]. 北京:生态环境部. (2020-03-22)[2023-03-02].https://www.doc88.com/p-20029051162472.html. Ministry of Ecology and Environment. Detailed investigation of agricultural land soil pollution point layout technical regulations (draft). Beijing: Ministry of Ecology and Environment. (2020-03-22)[2023-03-02]. https://www.doc88.com/p-20029051162472.html. [27] Chen M L, Cai H Y, Wang L, et al. Grid-scale regional risk assessment of potentially toxic metals using multi-source data[J]. ISPRS International Journal of Geo-Information, 2022,11(8):427. [28] 杨寒雨,赵晓永,王磊.数据归一化方法综述[J]. 计算机工程与应用, 2023,59(3):13-22. Yang H Y, Zhao X Y, Wang L. Review of data normalization methods[J]. Computer Engineering and Applications, 2023,59(3):13-22. [29] 生态环境部.土壤污染重点行业企业筛选原则[EB/OL]. 北京:生态环境部. (2019-05-05)[2023-03-02]https://www.doc88.com/p-8781736013105.html. Ministry of Ecology and Environment. Screening principles of key industries of soil pollution enterprises[EB/OL]. Beijing: Ministry of Ecology and Environment. (2019-05-05)[2023-03-02]. [30] HJ 25.3-2019建设用地土壤污染风险评估技术导则[S]. HJ 25.3-2019 Technical guidelines for risk assessment of soil[S]. [31] 邹辉,段学军.长江沿江地区化工产业空间格局演化及影响因素[J]. 地理研究, 2019,38(4):884-897. Zou H, Duan X J. Spatial evolution of chemical industry and its influencing factors in the regions along the Yangtze River[J]. Geographical Research, 2019,38(4):884-897. [32] Li K, Wang J Y, Zhang Y W. Heavy metal pollution risk of cultivated land from industrial production in China:spatial pattern and its enlightenment[J]. Science of the Total Environment, 2022,828: 154382. [33] Liu W, Shen J, Wei Y D, et al. Environmental justice perspective on the distribution and determinants of polluting enterprises in Guangdong, China[J]. Journal of Cleaner Production, 2021,317: 128334. [34] 王罡.杭州经开区生态工业发展研究[D]. 杭州:浙江工业大学, 2013. Wang G. Technical research on eco-industrial development in Hangzhou economic& technological development area[D]. Hangzhou: Zhejiang University of Technology, 2013. [35] 杨盛平,汪碧澄.勇攀石化新高地击楫中流再出发上海石油和化学工业“十四五”规划展望[J]. 上海化工, 2021,46(3):3-4. Yang S P, Wang B C. Looking forward to the “Tenth Five-Year Plan” of Shanghai petroleum and chemical industry after hitting the middle stream in the new highland of Yongpan Petrochemical Company[J]. Shanghai Chemical Industry, 2021,46(3):3-4. [36] 曹彦斌.改革开放后苏州小城镇总体规划编制演变研究[D]. 苏州:苏州科技大学, 2018. Cao Y B. Research on the development of Suzhou small town master plan after reform and opening up[D]. Suzhou: Suzhou University of Science and Technology, 2018. [37] Yeboah J, Mcclelland R L, Polonsky T S, et al.Comparison of Novel Risk Markers for Improvement in Cardiovascular Risk Assessment in Intermediate-Risk Individuals[J]. Jama-Journal of the American Medical Association, 2012,308(8):788-795. [38] 王英刚,谷成阳,苏一鸣,等.我国东北某铅锌矿矿区周边农田土壤铅暴露的儿童健康风险评估[J]. 沈阳大学学报(自然科学版), 2022, 34(5):346-353. Wang Y G, Gu C Y, Su Y M, et al. Risk assessment of children exposed to lead in soil around a lead-zinc mine in northeast China[J]. Journal of Shenyang University (Natural Science), 2022,34(5):346-353. [39] 杨文武.化工企业周边土壤中二噁英的分布特征及健康风险评估[D]. 南京:南京理工大学, 2019. Yang W W. Distribution and health risk assessment of dioxins on soil around a chemical company[D]. Nanjing: Nanjing University of Science & Technology, 2019. [40] Han R R, Zhou B H, An L Y, et al. Quantitative assessment of enterprise environmental risk mitigation in the context of Na-tech disasters[J]. Environmental Monitoring and Assessment, 2019,191(4):210. [41] Hatefi, Basiri, Tamošaitienė. An evidential model for environmental risk assessment in projects using dempster-shafer theory of evidence[J]. Sustainability, 2019,11(22):6329. [42] Jia C, Yuan Z W, Huang L. Environmental risk source management system for the petrochemical industry[J]. Process Safety and Environmental Protection, 2014,92(3):251-260. [43] 田涛,李闯,高海龙.江苏省电镀园区环境规范化管理研究[J]. 电镀与涂饰, 2019,38(24):1377-1382. Tian T, Li C, Gao H L. Study on environmental standardization management of electroplating parks in Jiangsu Province[J]. Electroplating & Finishing, 2019,38(24):1377-1382. [44] 万咏咏.基于“源-途径-受体”的多尺度有色金属工业场地潜在风险评估[D]. 华中农业大学, 2022. Wan Y Y. Potential risk assessment of multi-scale nonferrous metal industrial sites based on “source-path-receptor”[D]. Wuhan: Huazhong Agricultural University, 2022. [45] 毛嘉玲,杨洁,邵智娟,等.基于受体易损性评估的区域环境风险应急管理[J]. 苏州科技大学学报(自然科学版), 2022,39(2):53-61. Mao J L, Yang J, Shao Z J, et al. Regional environment risk emergency management based on the vulnerability assessment of rhe receptors[J]. Journal of Suzhou University of Science and Technology (Natural Science Editon), 2022,39(2):53-61. [46] 谢兴勇,祖维,刘雪梅,等.基于受体易损性评估的突发事故环境风险应急管理研究[J]. 环境污染与防治, 2013,35(12):92-96. Xie X Y, Zu W, Liu X M, et al. Environmental risk management of sudden accident based on vulnerability assessment[J]. Environmental Pollution & Control, 2023,35(12):92-96.