采用自下而上的清单编制方法,搜集各农业环节(秸秆燃烧、整地、收割、谷物处理、化肥施用、农机排放、风蚀)排放因子、作物面积和耕作方式等信息,编制了2010年东北地区县级尺度的农业一次颗粒物(PM10和PM2.5)排放清单,并分析了农业源颗粒物排放的时空分布特征.结果表明:1)2010年东北地区农业源一次颗粒物PM10总排放量54.6万t,PM2.5总排放量35.6万t;2)东北地区农业源一次颗粒物PM10排放量最大的农业活动环节是秸秆燃烧,占农业源总排放量的比例为60%,秸秆燃烧排放PM2.5占PM2.5农业源排放量的87%,整地环节是一次颗粒物排放的第2大农业排放源,对农业源排放PM10和PM2.5总量的贡献率分别是27%和6%; 3)PM10和PM2.5的排放强度空间分布表明,东北地区农业源颗粒物排放区域集中在黑龙江省东北部和中部地区,吉林省中部和辽宁省中部地区; 4)PM10和PM2.5排放的时间变化特征显示,PM10农业源排放年变化曲线中,5月份和9、10月份是农业源排放一次颗粒物PM10较多的月份,PM2.5排放集中在9、10月份;5)本研究估算的污染物排放清单的不确定性为184.3%.未来的工作将侧重于典型农业区本土排放因子测定,从而有效减小排放清单的不确定性.
利用地基观测结果和多源卫星遥感观测,结合气象数据及HYSPLIT4后向轨迹模式,对华北平原中部背景地区(河南省郑州市中牟县东南郊)冬季霾事件的污染物特征和形成过程进行分析.综合观测时间为2014年12月13日~2015年1月16日,共有5次霾过程,占观测总天数的82%.地面监测结果显示,不同的污染过程污染物浓度变化曲线相似,O3浓度在清洁天浓度较高;NOx、SO2、PM10、PM2.5呈较强正相关性,NOx、SO2与 PM10相关系数0.64、0.57,与PM2.5相关系数0.56、0.45;近地面污染物以细粒子污染物为主,其中又以气态污染物二次生成的细粒子为主.AMPLE地基激光雷达和CALIPSO数据表明,华北平原霾层中上部受浮尘影响,以粗粒子污染物为主.气象探空数据表明该地区冬季大气对流层稳定利于霾的维持,假相当位温垂直差、K指数、露点差与能见度相关系数分别为0.52、0.56和 0.38.分析近地面风速风向对霾过程的影响表明,该地区冬季以南方向静小风为主,风速与能见度相关系数为0.32 ,PM1受东北方向污染源影响,PM1~2.5及PM2.5~10受西北方向污染源影响;结合高空风场分析,霾过程1受西北浮尘影响,霾过程5受南来水汽影响.通过后向轨迹分析,该地区冬季的低空污染传输主要来自东北和西北方向,其中东北方向区域传输来自河北与山东,占来源比例的14%,近距离污染传输主要来自站点以西的郑州、洛阳,约占来源比例的33%.
利用河北省环保局环境监测站提供的污染物浓度数据及常规气象观测数据、NCEP再分析资料,结合HYSPLIT4.9后向轨迹模式,对2014年10月上旬发生在河北省的2次大范围的重霾天气特征和成因进行综合分析.结果表明,这2次重污染天气过程PM2.5地面浓度最大值出现在邢台,为507μg/m3,水平能见度不足1km.均压场的分布和较为平稳的高空形势为2次霾天气提供了有利的气象背景.高湿,静小风以及较低的混合层高度不利于污染物扩散,是导致这两次重污染天气持续的主要原因.结合卫星火点及污染物来源分析表明,河北南部及周边省份的秸秆燃烧加重了第2次过程的污染,污染气团的输送对区域性重霾天气产生重要影响.
利用东北地区194个地面气象观测站的1961~2013年观测资料,对东北地区霾日及不同等级霾日的空间分布特征和时间演变规律进行分析.结果表明:东北地区霾日空间分布差异显著,辽宁中部和黑龙江中北部霾日相对较多,年平均霾日超过50d,吉林西部地区霾日最少,年平均霾日不超过2d,不同等级的霾日日数空间分布与总霾日日数基本一致;东北地区霾日主要集中在冬季,占全年霾日57.9%,秋季次之,春季最少;1961~2103年东北地区平均霾日呈显著增加趋势(2.9d/10a),其中1981~2000年时段增加最为显著,轻微霾日、轻度霾日、中度霾日和重度霾日均呈增加趋势,但轻度霾日、中度霾日和重度霾日21世纪以来较80年代略有减少.
利用中山市2000~2014年气象资料及2013~2014年环境监测站资料,分析中山市霾特征及气象影响因子,结果表明,中山市霾日数年际变化明显,最少为11d,出现在2005年;最多为134d,出现在2008年.霾天气主要发生在秋冬季节,霾日数最多的月份是1月,平均为10.5d.霾日PM2.5的平均浓度是非霾日的2.26倍,PM2.5是霾天气的重要污染物.中山市霾日典型天气形势有7种:大陆高压型、海上高压型、均压场型、冷锋前部型、台风外围下沉气流型、槽前脊后型、低压槽型.其中以大陆高压型占比例最高,为52.03%,冷锋前部型造成的能见度最低.气流轨迹聚类分析表明,影响中山的气流轨迹有7类,主要来源于东北方向的大陆和偏东方向的沿海;在东北方向气流轨迹影响下,污染物浓度较高;在东部沿海的气流轨迹下,能见度较低,表明中山市的霾天气受区域传输影响显著.
利用2015年1月气溶胶散射和吸收系数、PM2.5质量浓度、大气能见度以及常规气象观测数据,分析了南京冬季大气气溶胶散射系数与吸收系数的变化特征,给出了散射系数与吸收系数对大气消光的贡献,以及能见度与PM2.5质量浓度和相对湿度的关系.结果表明,观测期间南京大气气溶胶的散射系数和吸收系数分别为(423.4±265.3) Mm-1和(24.5±14.3) Mm-1,对大气消光的贡献分别为89.2%和5.2%,表明大气消光主要贡献来自于气溶胶的散射.散射系数与PM2.5相关性较好(R2=0.91),能见度随PM2.5质量浓度呈指数下降,也与相对湿度保持一定负相关性.能见度均值为4.3km,且连续出现能见度不足2km的低能见度天气,霾天气下消光系数和PM2.5质量浓度大幅超过非霾天气,最高值分别达到1471.2Mm-1和358 μg/m3,霾天气下能见度的降低来自颗粒物与相对湿度的共同影响.
采用傅里叶变换衰减全反射红外光谱法(ATR-FTIR)研究北京西北城区灰霾天气下PM2.5中有机官能团(R-OH羟基、R-CH脂肪族碳氢基、R-CO-羰基、R-NO2硝基官能团)和无机离子(NH4+、SO42-、NO3-)的变化规律.结果表明, PM2.5中无机离子(NH4+、SO42-、NO3-)的ATR-FTIR吸收峰值高于有机官能团(R-CH, R-CO-, R-NO2, R-OH)的峰值; 有机官能团R-CH的吸收峰峰值高于R-CO-和R-NO2 官能团的吸收峰, R-OH官能团的吸收峰峰值最低.灰霾天PM2.5中各有机官能团和无机离子的ATR-FTIR吸收峰值明显高于非灰霾天.说明灰霾天气下PM2.5中这些官能团及无机离子的质量浓度均高于非灰霾天.灰霾天PM2.5中无机离子(NH4+、SO42-、NO3-)质量浓度高于有机官能团(R-CH, R-CO-, R-NO2, R-OH) 的质量浓度,且有机官能团以R-CH为主, R-CO-, R-NO2 次之, R-OH最少.
为了解北京春季气溶胶光学特性,利用AERONET Level 2.0数据资料研究了2010~2014年北京市春季大气气溶胶光学参数,以晴空作为背景,比较分析了春季及沙尘期间大气气溶胶光学性质的差异.研究发现,北京春季与沙尘期间粗粒子消光占总消光的28%和59%,沙尘期间粒子吸收仅占消光的11.4%,说明沙尘天气发生时以粗粒子消光为主且吸收作用弱.沙尘天气溶胶光学厚度呈现出高值,其值为春季平均值的1.7倍.Angstrom波长指数在沙尘期间远小于非沙尘期间,且有85%小于0.6.北京春季体积尺度谱以粗模态峰为主,其中沙尘天粗模态的体积浓度为0.81μm3/μm2明显大于春季的值(0.25μm3/μm2).沙尘期间单次散射反照率随波长增加递增,在波长440~1020nm间的平均值大于春季均值.复折射指数实部在沙尘过程的平均值达到1.51(440nm),春季均值为1.48(440nm),表明沙尘气溶胶的散射能力更强;复折射指数虚部随波长增大呈减小趋势,且春季平均值大于沙尘期间的值.沙尘期间辐射强迫大于春季值,并远高于春季晴空条件下均值.
准确的空气质量数值预报模式依赖于精确的气象条件模拟,尤其依赖于大气边界层的准确模拟.为理解边界层过程如何影响空气污染物的传输与混合,利用WRF-Chem模式不同边界层方案(YSU和MYJ)进行敏感性试验,针对山西冬季典型静稳天气,对地面温度场、地面风场、PM2.5浓度及边界层内部的动力和热力层结进行模拟分析,并与观测资料进行对比,分析不同PBL方案对于气象要素和PM2.5浓度分布的模拟能力,探讨边界层内部热力层结和湍流输送差异对PM2.5浓度模拟的影响.结果表明:2种边界层方案均能较好模拟出冬季静稳天气背景下地面温度、风速及PM2.5浓度的空间分布和日变化特征,气温模拟的较大误差主要出现在夜间,而地面风速和PM2.5浓度的模拟结果在午后误差较大;相对于YSU方案,局地MYJ方案模拟的温度、风场和PM2.5浓度的误差更小,模拟结果更接近于实况观测.地面PM2.5浓度的模拟误差可能与近地面逆温层、混合层及地面风速等的模拟误差有关;不同边界层参数化方案导致的边界层内热力层结和湍流输送的模拟差异,可能是影响近地面PM2.5浓度模拟差异的主要原因;夜间MYJ方案逆温层厚度较厚,地面PM2.5模拟浓度较低;午后MYJ方案混合层高度较低,加之地面风速较弱,导致地面PM2.5模拟浓度较高.
在空气质量模式CMAQ中增加了对大气中苯并[a]芘(BaP)传输、转化和沉降过程的模拟,新增了BaP气相/颗粒相间分配模式(KOA吸收模式)以及BaP化学转换,并采用该模型模拟了2014年1、4、7、10月四个季节代表月中国大气中BaP的浓度以及干湿沉降通量的空间分布特征.模拟结果与部分地区的实测数据进行了初步对比验证,结果显示BaP浓度的模拟值和测量值的量级基本一致,其比值基本在1~2个量级范围内,表明模拟结果处于可接受的范围.基于模型结果,还探讨了BaP浓度与沉降季节变化特征与人为源排放的紧密联系,说明湿沉降是BaP最主要的沉降途径.BaP沉降的空间分布与其排放源和浓度具有密切的联系,并且具有长距离输送的特征等.
利用计算流体动力学方法,分别选用参差比为0.0, 0.2, 0.4, 0.6和0.8等5种建筑模型,探讨了在水平自然风条件下重密度污染源(汞)在不同参差比建筑物间的沉积过程,以及街区内行人层汞浓度与建筑参差比之间的关系.模拟结果发现,城市街区建筑物高低错落分布的布局会促进高空汞污染源在行人层的聚集,使得街区行人层汞浓度明显增大;并且随着街区建筑物参差比的增大,最高汞浓度值所在的街道有序地靠近来流上游,而较高建筑物背风面街道行人层汞质量流量明显高于较矮建筑物背风面街道行人层汞质量流量.
孔隙率是影响抑尘网防护效果的最主要因素,不同孔隙率抑尘网对料堆表面的显著作用区域不同,高孔隙率(ε30.3)网后料堆中下部扬尘得到明显抑制,低孔隙率(ε < 0.3)网的抑尘作用则于料堆上部突显.基于均匀孔隙率的抑尘区域提出不同孔隙率组合的非均匀抑尘网,选取6种典型非均匀工况,应用Fluent6.3对网和料堆周围流场进行数值模拟,结果显示:网下部孔隙率(εL)相同,上部孔隙率(εH)由0增至0.1时,网后气流扰动减弱,基于湍流结构和料堆受力判定εH取0.1较好;网上部孔隙率(εH)相同,下部孔隙率(εL)由0.3增至0.6时,紧贴料堆表面风速随εL增大而增大,εL为0.3时最优.比较非均匀抑尘网最佳工况(εH=0.1/εL=0.3)与均匀网(ε=0.1和ε=0.3)的料堆表面受力显示:εH=0.1/εL=0.3非均匀网可使起尘量最大的迎风面的各个区域剪切力均显著减小,中下部比ε=0.1时减小85.2%,上部比ε=0.3时减小84.3%,料堆表面剪切力总和的减少量可达均匀网时的50%左右.
以亚硝酸盐作为电子受体进行反硝化除磷污泥的驯化,并探究了工艺运行条件、性能及实际应用情况.研究表明:厌氧-缺氧-好氧驯化方式可快速富集以亚硝酸盐为电子受体的反硝化聚磷菌,通过逐步提高底物浓度可以驯化富集耐受高NO2--N浓度的DNPAOs.实际废水运行实验表明,反硝化除磷法处理猪场废水UASB-SFSBR尾水是可行的,当缺氧进水NO3--N、NO2--N和PO43--P浓度分别为5,70,30mg/L时,出水NO3--N和NO2--N浓度基本为0,PO43--P浓度在1.0mg/L以下.
采用脱氮除磷膜生物反应器(UCT-MBR)工艺处理冀南地区城市污水,考察了SRT对UCT-MBR工艺反硝化除磷性能与膜污染行为的影响.结果表明:较短(15d)与较长(40d)SRT均不利于反硝化聚磷菌(DPAOs)的富集;SRT控制在25d时系统的反硝化除磷性能得到最大程度强化,反硝化聚磷菌(DPAOs)占聚磷菌(PAOs)的数量比例及缺氧除磷率达到最大值,分别稳定在50.9%和88%,并且此时系统总磷(TP)、总氮(TN)去除率也达到最大值91.7%、73.6%,出水浓度分别稳定在0.48, 13.3mg/L左右;SRT对系统COD、氨氮(NH4+-N)的去除效能影响不大,COD、NH4+-N平均去除率分别为89.8%、99.7%,出水浓度分别稳定在30.8, 0.15mg/L;随着SRT的延长,膜池混合液固体(MLSS)浓度升高,分子量大于100kDa、小于1kDa的溶解性微生物代谢产物(SMP)浓度和胞外聚合物(EPS)比污泥浓度升高及污泥粒径(PSD)减小,是导致膜池污泥可滤性变差的主要原因,从而致使系统膜渗透性加速降低、持续运行周期缩短,而红外光谱(FT-IR)分析表明SRT对膜污染物质的组成无显著影响,光谱折射率与SMP、EPS含量呈现一致性.
为研究不同缺氧好氧比对半亚硝化稳定性的影响,采用连续流反应器,在常温(22~25 ℃),DO(0.3~0.5mg/L)和FA协同作用下实现了全亚硝化后,转变进水为AO除磷二级出水,并逐步向半亚硝化过渡.在此过程中考察了不同缺氧好氧比(0:1、1:1、2:1和3:1)对半亚硝化稳定性的影响.结果表明,缺氧好氧比为0:1时,很难维持低NH4+-N(40~70mg/L)亚硝化的稳定,缺氧好氧比为1:1、2:1、3:1时均能维持稳定的半亚硝化效果,相比之下缺氧好氧比为3:1时更加节能;在缺氧好氧比0:1,1:1,2:1,和3:1的过程中,氨利用速率分别提高了29.57%、44.27%、45.23%、49.63%.在整个过程中污泥沉降性能良好,SVI在65~130mL/g.
考察了对苯醌(HQ)活化过硫酸盐(PS)过程中降解罗丹明B(RhB)的动力学特征及其影响因素.结果表明:HQ含量、pH值以及温度对活化PS降解RhB的动力学过程和特征均产生不同程度的影响.在pH=4.6时,HQ能有效活化PS,显著促进其对罗明丹B的降解效能;随着体系中HQ含量的上升,RhB的降解程度得到提升,反应速率常数k的值与体系中HQ含量之间呈线性相关.在HQ的活化作用下,PS降解RhB反应的活化能由41.99kJ/mol降低至13.90kJ/mol,RhB降解程度和反应速率均得到提升.当pH=4.6,HQ=0.1mmol/L以及PS=1.0mmol/L时,HQ活化PS的过程中罗丹明B降解率可高达90%以上,反应速率增加了106%.染料RhB在充当表征活化PS效果试剂的同时,也积极参与了HQ活化PS过程,使得“HQ-RhB-PS”耦合体系的氧化降解能力得到显著提升.
以聚合氯化铝(PAC)和聚二甲基二烯丙基氯化铵(PDMDAAC)为原料制备复合混凝剂,采用强化混凝的处理方法,对高浊度水体中有机氯(OCPs)以及浊度去除效果进行研究.考察了PAC-PDMDAAC复合比例、复合混凝剂投加量、水样初始浊度、慢速搅拌时间、pH值等因素对浊度和OCPs去除效果的影响,结合絮体分形维数和Zeta电位对去除效果进行验证.结果表明,复合比例对处理高浊水体中的OCPs以及浊度效果影响较大,PAC与PDMDAAC复合比例为5:1,投药量为1mL/L,慢速搅拌时间为15min时,OCPs和浊度去除率达到最佳;随着初始浊度的升高,水体中OCPs的去除率也随之增加,表明PAC-PDMDAAC复合混凝剂更适用于高浊度水中OCPs和浊度的去除;复合混凝剂与其他混凝剂相比,其最佳pH值范围较广,当pH值为4时,OCPs和浊度去除率达到最佳.利用絮体分形维数和Zeta电位两种表征手段对混凝效果进行进一步探讨,说明了实验结果的正确性.
利用厌氧序批式反应器(ASBR)处理食品废水,结合三维荧光光谱技术考察不同反应时段废水中溶解性有机物(DOM)的光谱特征和物质来源,并建立DOM特征峰荧光强度与氨氮浓度的关系.工艺运行结果表明:食品废水经过ASBR处理后,进水的COD从1100mg/L降至91mg/L,COD去除率达到91.73%,说明ASBR反应器可有效降解食品废水中的有机物质.三维荧光光谱显示,5种物质的特征荧光峰,即高激发波长色氨酸(峰A)、低激发波长色氨酸(峰B)、可见光区富里酸(峰C)、紫外光区富里酸(峰D)、类腐殖酸(峰E).随着厌氧生物处理的进行,峰A、峰B和峰C的荧光强度表现为先增加后减少的趋势;峰D荧光强度表现为微弱增加趋势;峰E荧光强度为先减少后增加趋势.荧光光谱指数FI、HIX、BIX表明,废水具有明显生物源特征.建立高激发波长色氨酸、低激发波长色氨酸特征峰荧光强度与色氨酸荧光强度之和与氨氮浓度在反应周期内的相关性,其相关系数分别为0.8136、0.9390、0.9153,说明可通过三维荧光光谱技术快速监测食品废水厌氧生物处理过程中的氨氮浓度.
利用饮用水厂运行10年的生物活性炭(BAC)装填滤柱,研究活性炭老化对滤柱过滤阻力和处理效果的影响.结果表明,活性炭老化会产生大量小粒径颗粒炭,沉积于活性炭池表层的小粒径颗粒炭产生的过滤阻力是滤柱总阻力的主要来源,其比阻约为底层炭的22倍.强化反冲洗仅可降低初始过滤阻力,移除表层细炭是降低活性炭滤池阻力的有效方法.强化反冲洗对滤柱过滤性能无显著影响.移除表层细炭后,老化活性炭滤柱对总有机碳的去除率由24.71%下降至7.04%,而后恢复至移除前的水平.移除表层炭后老化活性炭对UV254和大于2μm颗粒数的去除率与对照组活性炭相似.降低活性炭滤池的反冲强度、延长过滤周期是延长老化活性炭寿命的有效方法.
以膨胀珍珠岩为载体,采用溶胶-凝胶法制备硼、氮共掺杂漂浮型TiO2,采用XRD、BET、SEM、UV-vis DRS、XPS等分析手段进行材料表征并考察其对柴油的光降解性能.结果表明,B-N-TiO2/EP复合光催化剂表面有明显的TiO2覆层,晶型为锐钛矿型TiO2,TiO2负载有利于比表面积的提升.制得的B-N-TiO2/EP的可见光区响应高于N-TiO2/EP和TiO2/EP,该结果与3种材料的柴油光降解效果相一致.B-N-TiO2/EP对柴油的9h降解率将近50%,GC-MS分析表明,光降解过程中柴油各特征组分(C9~C23)均得到不同程度降解,其中C11以下的短链有机分子降解效果明显.
利用正硅酸乙酯水解在磁性纳米锰锌铁氧体表面包裹SiO2,制备了一种新型“核/壳”结构磁性纳米复合物材料Si-Fe-MNCs.采用N2-吸附脱附法、透射电子显微镜(TEM)、振动样品磁强计(VSM)和傅利叶变换红外技术(FT-IR)分别对Si-Fe-MNCs的织构性能、形貌和磁性能进行了表征.结果表明,该磁性材料对亚甲基蓝表现出良好的吸附性能,318K时平衡吸附量在40.31~184.1mg/g之间,120min可达吸附平衡,符合准二级动力学方程.吸附过程符合Langmuir等温吸附模型,热力学计算结果表明Si-Fe-MNCs对亚甲基蓝的吸附是以表面物理吸附为主的自发吸热过程,红外结果表明氢键是Si-Fe-MNCs表面官能团与亚甲基蓝之间的主要作用力.Si-Fe-MNCs采用H2O2进行再生,5次循环使用后,对MB的平衡吸附量仍可维持在93.64mg/g.
利用三维荧光光谱和红外光谱研究污水处理厂活性污泥中萃取的胞外聚合物与四溴双酚A之间的相互作用.结果显示,活性污泥胞外聚合物中存在3个明显的荧光峰,分别为,Ex/Em=230/300nm(峰A)、Ex/Em=240/350nm(峰B)和Ex/Em=270/370nm(峰C).荧光滴定结果表明,3个荧光峰随着四溴双酚A 的加入均发生不同程度的猝灭.修正的Stern-Volmer模型和Ryan-Weber非线性模型计算胞外聚合物与四溴双酚A之间的结合常数,二者间的结合常数值(lg K)在4.23~6.27之间.红外光谱和同步荧光结果显示,胞外聚合物与四溴双酚A 结合导致胞外聚合物原有的蛋白质结构发生变化.同时,考察了不同环境条件(pH值、电导率以及离子)对两者作用的影响.结果表明:pH值和离子变化对胞外聚合物与四溴双酚A结合强度有影响,但电导率的变化影响并不显著.
通过批次吸附实验及介观和谱学等表征方法,研究了大肠杆菌(E.coli)粉末对水体中U(Ⅵ)的富集行为和吸附模型,并对其作用产物进行了详细分析.结果表明:大肠杆菌对初始浓度为50mg/L U(Ⅵ)溶液(pH=5)的吸附容量可达到276.89mg/g.Langmuir等温模型和准二级动力学方程能较好的描述其吸附过程. FTIR、SEM-EDS、XRD分析结果表明:在与水体中U(VI)作用后,大肠杆菌表面检测出UO22+的红外特征峰(876.16cm-1)和U的能谱吸收峰(结合能=2.4~4.4keV).UO22+主要与菌体表面的烷基、氨基、羧基、分子间氢键发生作用,重点与PO2-、P(OH)2、PO43-以及PO3-等含P基团进行络合配位,最终产物以CaU(PO4)2、Ca(UO2)2(PO4)2·xH2O、NaUO2(PO3)3等铀的磷酸盐形式存在.
为简化微生物絮凝剂投加步骤,消除由于助凝剂添加而引起的环境二次污染问题,以3-氯-2-羟丙基三甲基氯化铵(CTA)修饰荷负电的微生物絮凝剂(~-54mV),从而获得荷正电的改性絮凝剂.实验结果显示,CTA与NaOH的摩尔比值是影响阳离子修饰效果的主要因素;阳离子修饰的的最佳条件为:10g微生物絮凝剂, 0.015mol CTA,20%含水率,CTA与NaOH的摩尔比为0.95,80℃反应2h后.在最佳条件下所得阳离子化微生物絮凝剂的Zeta电位可达+16mV,其对高岭土的絮凝率也由阳离子化前的60.5%上升至91%.由阳离子化絮凝剂的结构表征可知,阳离子修饰过程并未改变微生物絮凝剂的根本结构,只是在原微生物絮凝剂基础上引入阳离子基团,从而增加了絮凝剂整体分子量;同时,由于阳离子基团的大量引入,絮凝剂的结晶度增加,从而使其溶解度增加.将阳离子化前后微生物絮凝剂应用于去除铜绿微囊藻,当阳离子化后微生物絮凝剂添加量为40mg/L时,其对藻类的去除率超过98%;而未阳离子修饰的微生物絮凝剂对该藻几乎没有去除效果.
在300,500,700℃下热解获得的污泥生物炭C300、C500和C700,分别添加至污泥中进行好氧降解反应,研究降解过程中污泥性质的变化,及反应前后污泥生物炭重金属含量的变化.结果表明,添加污泥生物炭提高了污泥降解产物的稳定性,降低了污泥中重金属的生物有效性.添加C300的产物稳定性最高、重金属生物有效性最低,相比对照工况,其产物的5日耗氧量降低了27%,Cu、Zn、As和Ni的生物有效性分别降低了24%、15%、26%和19%.反应后C300和C500中水溶性重金属含量没有显著变化,而C700中水溶性Cu、Zn和Ni的含量分别增加了16,94,4mg/kg. C300作为污泥好氧降解添加剂经济可行.
通过系统分析危险填埋场的设计功能,结合安全寿命周期的定义,对危险废物填埋场的安全寿命周期进行了定义.在此基础上,通过文献查阅和理论推导确定了描述危险废物填埋场主要单元性能衰减的老化模型,并结合课题组开发的渗漏环境风险分析模型,建立了危险废物填埋场的安全寿命评估模型,并选择中部某危险废物填埋场进行了案例研究.结果表明:随着防渗材料老化以及导排层淤堵,渗滤液渗漏量将逐渐增加,其安全贮存功能将逐渐丧失,并逐渐达到其安全寿命周期.仅就本案例而言,该填埋场的安全寿命周期为385a;对安全寿命周期相关参数的敏感性分析表明,浸出浓度与填埋场安全寿命周期呈负相关,包气带厚度和含水层厚度与安全寿命周期呈正相关,相关系数分别为-0.79、0.99和0.72,这说明包气带厚度对安全寿命周期影响更大,其次为浸出浓度,最后为含水层厚度;应加强填埋场相关单元老化模型研究,开展其他因素对填埋场安全寿命周期的影响,进一步完善危险废物填埋场安全寿命周期评价理论和方法.
以苏北沿海某滩涂区为研究区,采用经典统计与地统计相结合的方法总结出2009年和2014年表层土壤Pb、Cr、Cd、As四种元素的含量,分析了土地利用方式对重金属含量影响以及重金属空间分布与时空变异.结果表明:滩涂区土壤4种元素含量基本都低于土壤环境质量一级标准值; 2009~2014年的5a间,研究区土壤Cd含量发生显著累积,居民区土壤Pb含量显著增加,工业园区土壤Pb、Cd亦显著累积,各土地利用方式下土壤Cr、As含量变化不显著;受大尺度的潮汐沉积作用与小尺度的人为活动共同控制,两个时期Pb、Cr含量分布具有空间相似性,而Cd、As含量空间分布差异较大;不同土地利用方式下研究区土壤重金属的累积具有变异性和明显的趋势效应,大气沉降是除了土地利用方式以外影响重金属时空变异格局的重要途径.该沿海滩涂区正面临土壤重金属不断累积的问题,应加强监控与源头减量,优化产业布局,推进过程阻断与生态修复.
为研究福建省闽江沿岸土壤中多环芳烃(PAHs)的残留状况、潜在来源及健康风险,采集闽江沿岸16个土壤样品,利用气相色谱/质谱(GC/MS)分析其中16种PAHs含量,结果表明:研究区土壤中16种PAHs的总含量为70.70~1667.83μg/kg,平均值为480.28μg/kg,其沿闽江沿岸呈“W”型分布模式,具体表现为城市高于郊区的变化;PAHs以2~3环为主,其中萘(Nap)的含量最高.基于PAHs的特征比值和主成分回归结合分析,研究区土壤中PAHs主要是石化和燃烧混合污染源,其中化石燃料高温燃烧占41.45%,石油源及生物质燃烧占49.34%,煤燃烧占9.21%.PAHs总毒性当量浓度值(TEQBaP)为3.10~121.15μg/kg,平均值为36.71μg/kg,37.50%的采样点超过荷兰土壤标准目标参考值(33.00μg/kg),表明闽江沿岸土壤已经受到PAHs不同程度的污染.健康风险评价表明,研究区土壤中PAHs的致癌风险(ILCRs)在10-8~10-6间,说明其致癌风险较小.
分别采用克隆文库和高通量测序技术,解析生物去除铁锰氨滤池内微生物的群落结构和功能菌多样性,并探讨不同测序手段的差异.高通量测序获得15057条有效序列、共32个分类纲,克隆文库测序涵盖9个具有明确分类地位的纲(75条序列),前者能揭示更为丰富的细菌群落结构多样性.功能菌(铁锰氧化细菌和硝化细菌)分析过程中,一些功能菌属在克隆文库中出现,而在高通量测序中未检测到,反之亦然.与单一的测序手段相比,二者相结合能更好地揭示功能细菌的分布特点.
于2013年8月~2014年10月,分季节对环渤海36条入海河流进行了4次调查采样,核算其COD入海通量,并评估其对渤海水质的影响.结果表明,大部分河流都受到了严重污染(COD为地表IV类),但污染最重的河流并不是COD入海通量最大的河流,COD的最大值和COD入海通量的最大值不具有一致性;环渤海河流排入渤海的CODCr的年入海通量最大(606万t),其次是酸性CODMn的入海通量(62万t),碱性CODMn最小,为53万t;环渤海河流在丰水期COD的入海通量约占全年的68%,其次是平水期(28%),枯水期最小(4%);整个渤海海域的碱性CODMn总量为239万t,其中环渤海河流输入约占25%.
采用固相萃取-高效液相色谱-串联三重四级杆质谱联用法(SPE-HPLC-MS/MS)测定河北潘家口水库中4种氯霉素类抗生素.该方法采用电喷雾电离源、多重反应监测正或(负)离子模式,4种氯霉素类抗生素加标回收率高于90%,相对标准偏差在1.60%~5.43%.方法的检出限在0.06~0.29ng/L,定量限在0.18~0.87ng/L.潘家口水库水样检测氟苯尼考残留量在26.21~233.35ng/L,氟苯尼考胺在0.53~8.18ng/L,所有水样中氯霉素和甲砜霉素均未检出.对潘家口水库氯霉素类抗生素残留的生态风险和人体健康风险评估表明,RQ(风险商)小于1,说明潘家口水体氯霉素类抗生素对浮游生物和人体健康尚不存在明显危害.丰水期成人和儿童的RQ均比平水期大,最大相差2个数量级.这可能由于此时期为网箱养鱼活跃期,或与水库调水有一定相关性.
利用紫外可见吸收光谱法及荧光光谱法研究有氧和缺氧条件下紫外线A波段(UV-A)辐照对铜绿微囊藻(Microcystis aeruginosa)胞内溶解性有机质(IDOM)(M. aeruginosa-IDOM)光降解行为,并考察光降解对其与芘结合能力的影响.结果表明,M. aeruginosa-IDOM经6d光降解后,有氧组中溶解性有机碳(DOC)浓度及其吸收系数a355降解幅度均高于缺氧组.有氧及缺氧状态下M. aeruginosa-IDOM光降解过程中吸光度比值E2/E3(250nm/365nm)变化相似,但254nm处比紫外吸收值(SUVA254)变化不同.激发–发射三维荧光光谱法(EEMs)结合平行因子(PARAFAC)分析,结果显示, M. aeruginosa-IDOM中类蛋白C1、长波激发类腐殖质C2及短波激发类腐殖质C3荧光强度在两种光降解条件下变化趋势不同. M. aeruginosa-IDOM光降解过程符合一级降解动力学特征的参数,在有氧组中降解半衰期均短于缺氧组.此外,光降解过程中,有氧组M. aeruginosa-IDOM与芘结合能力降低,但缺氧组M. aeruginosa-IDOM与芘结合能力先下降后增加.
基于原子吸收和ICP-MS,研究了贵州威宁草海4种重金属Zn、Pb、Cd、Ni的分布规律,并分析了其对底栖动物群落结构的影响.结果表明,表层沉积物中Zn、Pb、Cd 3种重金属含量已超过加拿大环境质量标准,超标样品量分别达到样品总数的82%、65%和47%,可能和周边历史上大规模的土法炼锌有关;草海表层水及孔隙水4种重金属含量均未超过国家I类地表水质量标准,表明污染的沉积物对水体重金属含量影响有限.表层沉积物中Zn、Pb、Cd均表现出湖中心及上游湖口含量更高的趋势,并和有机质呈显著正相关关系(r=0.837, P < 0.01; r=0.785, P < 0.01; r=0.780, P < 0.01),表明有机质在Zn、Pb、Cd的迁移和沉积中扮演了重要角色.在湖心沉积物柱中,Zn、Pb、Cd 3种重金属从剖面上部约10cm往上均有逐渐升高富集的趋势,与草海周边近几十年的大规模土法炼锌历史吻合.不管在表层沉积物还是在沉积物柱中Ni都呈现与其它3种重金属相反的分布规律,可能与Ni主要来源于自然背景有关.底栖动物群落结构调查表明,周边采样点比湖内采样点的底栖动物种类更为丰富,栖息密度也更大,这可能与草海湖内采样点重金属含量远高于湖周边采样点有关,具体影响及机制需要进一步深入研究.
研究了洱海上覆水溶解性有机氮(DON)含量及空间分布,利用三维荧光和紫外光谱技术分析了其结构组分特征,探讨了DON与湖泊水质间关系.结果表明:2014年洱海上覆水DON含量在0.08~0.33mg/L之间,全年平均为0.18mg/L,时间分布为春季 > 夏季 > 秋季 > 冬季,空间分布呈南部 > 北部 > 中部的趋势,垂向分布呈中层 > 表层 > 底层的趋势.洱海上覆水DON腐殖化程度较高,取代基中羰基、羧基、羟基、酯等含量较少,主要以脂肪链为主;自生源指数(BIX)在0.84~1.19之间(平均值0.94),荧光指数FI值在1.58~1.66之间(平均值为1.63),表明洱海上覆水DON受陆源输入和内源生物代谢共同影响;另外,洱海上覆水DON主要组分为腐殖质类物质(平均61.82%),且在0~2m各荧光组分转化量最大,其类蛋白成分P(I+II,n)始终小于20%.洱海上覆水DON和溶解性总氮(DTN)呈极显著正相关(R=0.949, P < 0.01),类蛋白物质与类腐殖质比值(P(I+II,n)/P(III+V,n))与TN、DTN和SRP呈显著正相关(R=0.467~0.552, P < 0.05),表明上覆水DON含量在一定程度上可以指示洱海水质状况,特别是其类蛋白物质含量能较好的指示其水质状况,即类蛋白物质含量越高,上覆水体氮磷含量越高.
以巢湖流域某一典型农田源头溪流为对象,基于溪流水文条件的动态变化性,从水文概率密度模型与营养盐滞留率模型综合集成角度,解析较长时间尺度下营养盐滞留有效流量的动态变化特征.在对水文概率密度模型Monte Carlo随机模拟的基础上,根据先前10次野外示踪实验获得的营养盐吸收速度等数据信息,定量评估溪流营养盐滞留的总体水平,估算最有效流量和等效流量.结果表明,农田溪流渠段的NH4+、PO43-滞留能力总体偏低,相应的期望滞留率分别为0.0671(6.71%)和0.0541(5.41%),最有效流量分别为0.0051,0.0049m3/s,功能等效流量分别为0.044,0.043m3/s.基于溪流营养盐吸收速度明显偏低的客观现状,有必要从溪流形态和河床地貌特征的改造着手,提升溪流水体营养盐滞留能力.
以萼花臂尾轮虫(Brachionus calyciflorus)为受试动物,研究了在不同斜生栅藻(Scenedesmus obliquus)密度(1.0×106,2.0×106,4.0×106个/mL)下,不同浓度(2.0,4.0,6.0,8.0,10.0μg/mL)的利福平溶液对萼花臂尾轮虫实验种群增长参数的影响.结果表明,与空白对照组及助溶剂对照组相比,1.0×106个/mL藻密度下,各浓度的利福平显著提高了轮虫的后代混交率;2.0×106个/mL藻密度下,2.0,4.0,10.0μg/mL的利福平显著提高了轮虫的內禀增长率,各浓度的利福平均提高了轮虫的后代混交率;4.0×106个/mL藻密度下,各浓度的利福平均显著提高了轮虫的內禀增长率和后代混交率.藻密度为1.0×106个/mL时,利福平浓度与轮虫的生命期望、世代时间、平均寿命和后代混交率间具有显著的剂量-效应关系;藻密度为2.0×106个/mL时,利福平浓度与轮虫的后代混交率间具有显著的剂量-效应关系;藻密度为4.0×106个/mL时,利福平浓度与轮虫的世代时间、净生殖率、內禀增长率和后代混交率间有显著的剂量-效应关系.
以1901~2005年作为历史碳排放分配时间段,从历史代际和代内公平的角度考虑,利用全球132个国家的人口、GDP和碳排放数据,通过基尼系数优化模型对全球132个国家的历史碳排放配额进行优化分配,同时对各国未来的碳排放权做了公平分配.研究结果表明,基于GDP和人口的各国历史碳排放配额Gini系数值均低于实际的Gini系数值,并且低于0.4的警戒值,获得综合考虑各国的GDP和人口的历史碳排放配额最优分配结果.对各国的历史碳排放的赤字量和剩余量分析表明,美国是历史碳排放赤字最多的国家,印度、中国是历史碳排放剩余最多国家;同时考虑各国的历史碳排放情况得到各国未来的碳排放权,其中中国、印度等国家人口最多,经济所占全球比例也较高,在未来能获得最多的碳排放权.
快速的城镇化使城市间距不断减小,上下游城市间水质的相互影响愈发显著.本研究提出基于水质的城市安全距离概念,建立基于BP神经网络水质模型的城市安全距离量化方法,并选择长江沿岸相邻的芜湖、马鞍山两市为案例,评估未来两市建成区扩张后城市间距的安全性,计算两市建成区的最小安全距离.结果显示,2020年芜湖与马鞍山4.6km的间距属于安全距离,能够保证下游城市马鞍山上游控制断面地表II类的水功能要求.但与2010年相比,控制断面水质变差,COD与氨氮浓度分别提高了29.2%与23.2%.为了保证控制断面的水功能要求,芜湖与马鞍山两市的最小安全距离为3.2km.
采用基于运输周转量的自下而上方法建立了中国水路运输业能源消耗和废气排放测算模型.根据GDP增长预测得到未来一段时间内中国内河、沿海和远洋货运周转量,结合IMO(International Maritime Organization)温室气体研究采用的废气排放因子,测算得到2001~2030年中国水路运输业的能源消耗和废气排放.研究结果表明:2001年,中国水路运输业燃油消耗量及NOx、CO、NMVOC(非甲烷挥发性有机物)、CO2、SO2和PM排放量分别为790.9,63.6,5.9,1.9,2483.2,37.2,4.6万t,到2030年,将分别为5951.8,405.1,16.5,18.3,18743.2,15.5,6.1万t;2001~2030年,中国水路运输业燃油消耗及CO2和NOx排放呈逐年增长趋势,年均增长率分别为7.2%、7.2%和6.6%;受国际公约的限制,与硫含量密切相关的SO2和PM排放量自2020年之后显著下降;2001年,中国水路运输业CO2排放量占世界航运排放量的比重在3.2%左右,此后呈逐渐上升趋势,到2020和2030年,将分别增长至11.5%和15.3%.
京公网安备 11010802030352号