Driving factors and attribution analysis of carbon emission intensity change in Beijing-Tianjin-Hebei region
CHEN Liang1, ZHANG Nan2, WANG Yi-fan2, HU Wen-tao3
1. Institute of China's Economic Reform and Development, Political economics research center featured with Chinese characteristics, Renmin University of China, Beijing 100872, China; 2. School of Economics, Renmin University of China, Beijing 100872, China; 3. Research Institute for Eco-civilization, Chinese Academy of Social Sciences, Beijing 100710, China
Abstract:Based on the LMDI-Attribution model, the paper investigated the spatial and temporal evolution of energy intensity, industrial structure and emission factors in Beijing-Tianjin-Hebei region along the Five-Year Plans of China from 2000 to 2020, and retrospectively quantified phased contributions of sub-sectors in each driving factors. Beijing has reached the carbon peak, while Tianjin and Hebei have entered a plateau since 2012. The carbon emission of Hebei province dominated the overall carbon emission trend of Beijing-Tianjin-Hebei region and rebounded during the middle and late stage of 13th Five-Year Plan. The overall carbon emission intensity of Beijing-Tianjin-Hebei region began to turn from rising to falling during the 11th Five-Year Plan, and rebounded in the middle and late 13th Five-Year Plan. From 2000 to 2020, the overall carbon emission intensity of Beijing-Tianjin-Hebei region decreased by 71.09%, among which emission factors contributed the least while energy intensity the most, with a cumulative inhibition contribution rate of 54.36% and an industrial structure of 38.17%. As for the carbon emission intensity change in Beijing-Tianjin-Hebei region, the dominant factor changed from energy intensity during 10th~12th Five-Year Plan periods to industrial structure in the 13th Five-Year Plan; during each period, the two factors, energy intensity and industrial structure, exerted an influence on the carbon emission intensity change basically through industry and transportation. During the four periods, the impact of industry through energy intensity on the change of overall carbon emission intensity presented a V-shaped change, from promoting to inhibiting to promoting again. At the end of the 13th Five-Year Plan, the promoting effect was 7.48%, while the impact through industrial structure showed a continuous and stable inhibiting effect. Since the 11th Five-Year Plan, transportation has continuously suppressed the overall carbon emission intensity change, both through energy intensity and industrial structure. Under the background of carbon peaking and carbon neutrality goals, policy recommendations are provided for the collaborative governance of Beijing-Tianjin-Hebei region.
BP. BP Statistical review of world energy 2022[M]. London:Whitehouse Associates, 2022.
[2]
张永年,潘竟虎.基于DMSP/OLS数据的中国碳排放时空模拟与分异格局[J].中国环境科学, 2019,39(4):1436-1446. Zhang Y N, Qiu T T. Spatio-temporal simulation and differentiation pattern of carbon emissions in China based on DMSP/OLS nighttime light data[J]. China Environmental Science, 2019,39(4):1436-1446.
[3]
Zhao X T, Burnett J W, Fletcher J J. Spatial analysis of China province-level CO2 emission intensity[J]. Renewable & Sustainable Energy Reviews, 2014,33(5):1-10.
[4]
王丽丽,王媛,毛国柱,等.中国国际贸易隐含碳SDA分析[J].资源科学, 2012,34(12):2382-2389. Wang L L, Wang Y, Mao G Z, et al. Structure decomposition analysis of embodied carbon emissions for China's international trade[J]. Resources Science, 2012,34(12):2382-2389.
[5]
肖皓,杨佳衡,蒋雪梅.最终需求的完全碳排放强度变动及其影响因素分析[J].中国人口·资源与环境, 2014,24(10):48-56. Xiao H, Yang J H, Jina X M. Analysis of the Change of Complete Carbon Intensity and Its Determinants from the Perspective of Final Demand[J]. China Population, Resources and Environment, 2014, 24(10):48-56.
[6]
许士春,习蓉,何正霞.中国能源消耗碳排放的影响因素分析及政策启示[J].资源科学, 2012,34(1):2-12. Xu S C, Xi R, He Z X. Influential factors and policy implications of carbon emissions for energy consumption in China[J]. Resources Science, 2012,34(1):2-12.
[7]
鲁万波,仇婷婷,杜磊.中国不同经济增长阶段碳排放影响因素研究[J].经济研究, 2013,48(4):106-118. Lu W B, Qiu T T, Du L. A study on influence factors of carbon emissions under different economic growth stages in China[J]. Economic Research Journal, 2013,48(4):106-118.
[8]
朱帮助,王克凡,王平.我国碳排放增长分阶段驱动因素研究[J].经济学动态, 2015,657(11):79-89. Zhu B Z, Wang K F, Wang P. Research on the phased driving factors of China's carbon emission growth[J]. Economic Perspectives, 2015,657(11):79-89.
[9]
Shrestha R M. Timilsina G R. Factors affecting CO2 intensities of power sector in Asia:a divisia decomposition analysis[J]. Energy Economics, 1996,18(4):283-293.
[10]
黄琳琳,王远,张晨,等.闽三角地区碳排放时空差异及影响因素研究[J].中国环境科学, 2020,40(5):2312-2320. Huang L L, Wang Y, Zhang C, et al. A spatial-temporal decomposition analysis of CO2 emissions in Fujian Southeast Triangle Region[J]. China Environmental Science, 2020,40(5):2312-2320.
[11]
马晓君,董碧滢,于渊博,等.东北三省能源消费碳排放测度及影响因素[J].中国环境科学, 2018,38(8):3170-3179. Ma X J, Dong B Y, Yu Y B, et al. Measurement of carbon emissions from energy consumption in three Northeastern provinces and its driving factors[J] China Environmental Science, 2018,38(8):3170-3179.
[12]
田泽,董凯丽,吴凤平.江苏省终端能源消费CO2排放总量测算及驱动因素研究[J].中国人口·资源与环境, 2015,25(11):19-27. Tian Z, Dong K L, Wu F P. Research on total estimates and driving factors of the end-use energy consumption's CO2 emissions in Jiangsu province[J]. China Population, Resources and Environment, 2015, 25(11):19-27.
[13]
王少剑,黄永源.中国城市碳排放强度的空间溢出效应及驱动因素[J].地理学报, 2019,74(6):1131-1148. Wang S J, Huang Y Y. Spatial spillover effect and driving forces of carbon emission intensity at city level in China[J]. Acta Geographica Sinica, 2019,74(6):1131-1148.
[14]
张华明,元鹏飞,朱治双.中国城市人口规模、产业集聚与碳排放[J].中国环境科学, 2021,41(5):2459-2470. Zhang H M, Yuan P F, Zhu Z S. City population size, industrial agglomeration and CO2 emission in Chinese prefectures[J]. China Environmental Science, 2021,41(5):2459-2470.
[15]
王少剑,谢紫寒,王泽宏.中国县域碳排放的时空演变及影响因素[J].地理学报, 2021,76(12):3103-3118. Wang S J, Xie Z H, Wang Z H. The spatiotemporal pattern evolution and influencing factors of CO2 emissions at the county level of China[J]. Acta Geographica Sinica, 2021,76(12):3103-3118.
[16]
余文梦,张婷婷,沈大军.基于随机森林模型的我国县域碳排放强度格局与影响因素演进分析[J].中国环境科学, 2022,42(6):2788-2798. Yu W M, Zhang T T, Shen D J. County-levelspatial pattern and influencing factors evolution of carbon emission intensity in China:A random forest model analysis[J]. China Environmental Science, 2022,42(6):2788-2798.
[17]
侯建朝,史丹.中国电力行业碳排放变化的驱动因素研究[J].中国工业经济, 2014,315(6):44-56. Hou J C, Shi D. Driving factors for the evolution of carbon dioxide emissions from electricity sector in China[J]. China Industrial Economics, 2014,315(6):44-56.
[18]
郭艺,张鹏飞,葛力铭,等.长江经济带电力碳排放时空变化及影响因素--基于区域和产业视角[J].中国环境科学, 2023,43(3):1438-1448. Guo Y, Zhang P F, Ge L M, et al. The spatio-temporal variation and influencing factors of electricity-related carbon emissions in the Yangtze River Economic Belt from the region and industry perspectives[J]. China Environmental Science, 2023,43(3):1438-1448.
[19]
马晓君,陈瑞敏,董碧滢,等.中国工业碳排放的因素分解与脱钩效应[J].中国环境科学, 2019,39(8):3549-3557. Ma X J, Chen R M, Dong B Y, et al. Factor decomposition and decoupling effect of China's industrial carbon emissions[J]. China Environmental Science, 2019,39(8):3549-3557.
[20]
章胜勇,尹朝静,贺亚亚,等.中国农业碳排放的空间分异与动态演进--基于空间和非参数估计方法的实证研究[J].中国环境科学, 2020,40(3):1356-1363. Zhang S Y, Yin C J, He Y Y, et al. Spatial differentiation and dynamic evolution of agricultural carbon emission in China--Empirical research based on spatial and non-parametric estimation methods[J]. China Environmental Science, 2020,40(3):1356-1363.
[21]
顾阿伦,吕志强.经济结构变动对中国碳排放影响--基于IO-SDA方法的分析[J].中国人口·资源与环境, 2016,26(3):37-45. Gu A L, Lv Z Q. Effects of economic structure change on carbon emission of China:analysis based on IO-SDA model[J]. China Population,Resources and Environment, 2016,26(3):37-45.
[22]
Ang B W, Zhang F Q, Choi K-Hong. Factorizing changes in energy and environmental indicators through decomposition[J]. Energy, 1998,23(6):489-495.
[23]
Leontief W W, Ford D. Air pollution and the economic structure:Empirical results of input-output comparisons[M]. Harvard University, 1972.
[24]
Ang B W. Decomposition analysis for policymaking in energy:Which is the preferred method?[J]. Energy Policy, 2004,32(9):1131-1139.
[25]
Kaya Y. Impact of carbon dioxide emission control on GNP growth:Interpretation of proposed scenario[R]. Paris:IPCC Energy and Industry Subgroup, response strategies working group, 1990.
[26]
Choi K H, Ang B W. Attribution of changes in Divisia real energy intensity index:an extension to index decomposition analysis[J]. Energy Economics, 2012,34(1):171-176.
[27]
刘晨跃,徐盈之.中国碳生产率演绎的驱动因素研究--基于细分行业的视角[J].中国地质大学学报(社会科学版), 2016,16(4):45-54. Liu Y C, Xu Y Z. Research on the driving factors of China's carbon productivity deduction--based on the perspective of industry segmentation[J]. Journal of China University of Geosciences (Social Sciences Edition), 2016,16(4):45-54.
[28]
赵涛,田莉,许宪硕.天津市工业部门碳排放强度研究:基于LMDI-Attribution分析方法[J].中国人口·资源与环境, 2015,25(7):40-47. Zhao T, Tian L, Xu X S. Carbon emission intensity of Tianjin industry based on LMDI-Attribution method[J]. China Population,Resources and Environment, 2015,25(7):40-47.
[29]
曲健莹,李科.工业增长与二氧化碳排放"脱钩"的测算与分析[J].西安交通大学学报(社会科学版), 2019,39(5):92-104. Qu J Y, Li K. Measurement and analysis of "decoupling" between industrial growth and carbon dioxide emissions in China[J]. Journal of Xi'an Jiaotong University (Social Sciences), 2019,39(5):92-104.
[30]
武义青,赵亚南.京津冀能源消费、碳排放与经济增长[J].经济与管理, 2014,28(2):5-12. Wu Y Q, Zhao Y N. Beijing-Tianjin-Hebei Energy Consumption, Carbon Emissions and Economic Growth[J]. Economy and Management, 2014,28(2):5-12.
[31]
王仲瑀.京津冀地区能源消费、碳排放与经济增长关系实证研究[J].工业技术经济, 2017,36(1):82-92. Wang Z Y. The Empirical Study on the Relationship Between Energy Consumption, Carbon Emissions and Economic Growth in Beijing-Tianjin-Hebei[J]. Journal of Industrial Technological & Economics, 2017,36(1):82-92.
[32]
何音,蔡满堂.京津冀地区经济增长与资源环境的脱钩关系[J].北京理工大学学报(社会科学版), 2016,18(5):33-41. He Y, Cai M T. Decoupling Relationship between Economic Growth and Resource Environment in Beijing-Tianjin-Hebei Region[J]. Journal of Beijing Institute of Technology (Social Science Edition), 2016,18(5):33-41.
[33]
周国富,宫丽丽.京津冀能源消耗的碳足迹及其影响因素分析[J].经济问题, 2014,(8):27-31. Zhou G F, Gong L L. Factor analysis of carbon footprint of Beijing Tianjin Hebei province energy consumption and influence[J]. On Economic Problems, 2014,(8):27-31.
[34]
闫云凤.京津冀碳足迹演变趋势与空间、产业分布[J].经济与管理研究, 2016,37(11):75-81. Yan Y F. Carbon footprint's trends, space, industrial distribution in Beijing-Tianjin-Hebei region[J]. Research on Economics and Management, 2016,37(11):75-81.
[35]
陈操操,刘春兰,汪浩,等.北京市能源消费碳足迹影响因素分析--基于STIRPAT模型和偏小二乘模型[J].中国环境科学, 2014,34(6):1622-1632. Chen C C, Liu C L, Wang H, et al. Examining the impact factors of energy consumption related carbon footprints using the STIRPAT model and PLS model in Beijing[J]. China Environmental Science, 2014,34(6):1622-1632.
[36]
王开,傅利平.京津冀产业碳排放强度变化及驱动因素研究[J].中国人口·资源与环境, 2017,27(10):115-121. Wang K, Fu L P. Study on the changes in carbon intensity and driving factors of Beijing-Tianjin-Hebei[J]. China Population,Resources and Environment, 2017,27(10):115-121.
[37]
赵玉焕,李浩,刘娅,等.京津冀CO2排放的时空差异及影响因素研究[J].资源科学, 2018,40(1):207-215. Zhao Y H, Li H, Liu Y, et al. Identifying driving forces of CO2 emissions in Beijing-Tianjin-Hebei region from temporal and spatial angles[J]. Resources Science, 2018,40(1):207-215.
[38]
杨曦,孟椿雨,林竞立,等.非首都功能疏解政策下北京四大功能区碳排放时空演化及区域异质性影响研究[J].中国地质大学学报(社会科学版), 2021,21(2):77-90. Yang X, Meng C Y, Lin J L, et al. Study on the spatiotemporal evolution of carbon emissions and the regional heterogeneity influences of the four functional areas under Beijing non-capital functions relocation policy[J]. Journal of China University of Geosciences (Social Sciences Edition), 2021,21(2):77-90.
[39]
吕倩.京津冀地区汽车运输碳排放影响因素研究[J].中国环境科学, 2018,38(10):3689-3697. Lv Q. Study on the driving factors of vehicle transport carbon emissions in Beijing-Tianjin-Hebei region[J]. China Environmental Science, 2018,38(10):3689-3697.
[40]
蔺雪芹,边宇,王岱.京津冀地区工业碳排放效率时空演化特征及影响因素[J].经济地理, 2021,41(6):187-195. Lin X Q, Bian Y, Wang D. Spatiotemporal Evolution characteristics and influencing factors of industrial carbon emission efficiency in Beijing-Tianjin-Hebei Region[J]. Economic Geograhy, 2021,41(6):187-195.
[41]
魏楚.中国二氧化碳排放特征与减排战略研究:基于产业结构视角[M].北京:人民出版社, 2015. Wei C. Research on China's carbon dioxide emission characteristics and emission reduction strategies:based on the perspective of industrial structure[M]. Beijing:People's Publishing House, 2015.
[42]
中华人民共和国生态环境部.中华人民共和国气候变化初始国家信息通报[M].北京:中国计划出版社, 2004. Ministry of Environmental Protection of the People's Republic of China. The People's Republic of China initial national communication on climate change[M]. Beijing:China Planning Press, 2004.
[43]
Ang B W, Choi K H. Decomposition of aggregate energy and gas emission intensities for industry:a refined Divisia index method[J]. Energy, 1997,(3):59-73.
[44]
GB/T4754-2017国民经济行业分类[S]. GB/T4754-2017 Classification of national economic industries[S].
[45]
李健,郭姣,苑清敏.京津冀协同发展背景下能源需求预测与政策影响研究[J].干旱区资源与环境, 2018,32(5):5-11. Li J, Guo J, Yuan Q M. Forecast of energy demand and policy impact under the background of the coordinated development in Beijing-Tianjin-Hebei region[J]. Journal of Arid Land Resources and Environment, 2018,32(5):5-11.
[46]
Zhao X, Ma C, Hong D. Why did China's energy intensity increase during 1998-2006:decomposition and policy analysis[J]. Energy Policy, 2010,38(3):1379-1388.
[47]
中华人民共和国中央人民政府.《北京市十一五规划纲要报告》[Z]. 2006. The Central People's Government of the People's Republic of China. The Eleventh Five-Year Plan of Beijing[Z]. 2006.
[48]
中华人民共和国中央人民政府.《天津市国民经济和社会发展十一五规划纲要》[Z]. 2006. The Central People's Government of the People's Republic of China. The Eleventh Five-Year Plan of Tianjin[Z]. 2006.
[49]
中华人民共和国中央人民政府.《关于河北省国民经济和社会发展第十一个五年规划纲要的报告》[Z]. 2006. The Central People's Government of the People's Republic of China. The Eleventh Five-Year Plan of Hebei[Z]. 2006.